K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Ta có:

\(\left\{\begin{matrix} \sqrt[3]{x^3-7}+y^2-2y+3=0\\ x^2+x^2y^2-2y=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \sqrt[3]{x^3-7}+2+(y^2-2y+1)=0\\ x^2(y^2+1)=2y\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{x^3+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(y-1)^2=0(1)\\ x^2=\frac{2y}{y^2+1}(2)\end{matrix}\right.\)

Từ \((2)\Rightarrow 1-x^2=\frac{y^2+1-2y}{y^2+1}\Leftrightarrow (1-x)(1+x)=\frac{(y-1)^2}{y^2+1}\)

Thay vào (1):

\(\frac{x^3+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(1-x)(1+x)(y^2+1)=0\)

\(\Leftrightarrow (x+1)\left[\frac{x^2-x+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}+(1-x)(y^2+1)\right]=0\)

+) Nếu \(x+1=0\Rightarrow x=-1\Rightarrow y=1\) (thay vào)

+) Nếu biểu thức trong ngoặc lớn bằng $0$

\(\Rightarrow (x-1)(y^2+1)=\frac{x^2-x+1}{\sqrt[3]{(x^3-7)^2}+2\sqrt[3]{x^3-7}+4}>0\)

\(\Rightarrow x>1\) \(\Rightarrow x^2>1\) hay \(\frac{2y}{y^2+1}>1\) hay \(0>(y-1)^2\) (vô lý)

Vậy hpt có nghiệm duy nhất \((x,y)=(-1,1)\)

\(\Rightarrow Q=x^{2008}+y^{2008}=(-1)^{2008}+1^{2008}=2\)

AH
Akai Haruma
Giáo viên
16 tháng 5 2018

Lời giải:

Không mất tổng quát giả sử \(c=\min (a,b,c)\)

Khi đó, do \(ab+bc+ac=3\Rightarrow ab\geq 1\).

Với $ab\geq 1$ ta có bổ đề sau: \(\frac{1}{a^2+1}+\frac{1}{b^2+1}\geq \frac{2}{ab+1}\)

Để cm bổ đề trên rất đơn giản. Quy đồng và biến đổi tương đương thu được \((a-b)^2(ab-1)\geq 0\) (luôn đúng với mọi \(ab\geq 1\) )

Sử dụng bổ đề vào bài toán:

\(\Rightarrow \text{VT}\geq \frac{2}{ab+1}+\frac{1}{c^2+1}=\frac{2c^2+ab+3}{abc^2+ab+c^2+1}(*)\)

Giờ ta sẽ cm \(\frac{2c^2+ab+3}{abc^2+ab+c^2+1}\geq \frac{3}{2}(**)\)

\(\Leftrightarrow 2(2c^2+ab+3)\geq 3(abc^2+ab+c^2+1)\)

\(\Leftrightarrow c^2+3\geq 3abc^2+ab\)

\(\Leftrightarrow c^2+bc+ac\geq 3abc^2\)

\(\Leftrightarrow c+b+a\geq 3abc\).

BĐT trên đúng do theo AM-GM: \(3(a+b+c)=(ab+bc+ac)(a+b+c)\geq 9abc\Rightarrow a+b+c\geq 3abc\) )

Do đó $(*)$ được cm.

Từ \((*),(**)\Rightarrow \text{VT}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi $a=b=c=1$

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}=\dfrac{36}{a+2b+3c}\)

\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}=\dfrac{4}{2a}+\dfrac{9}{3b}+\dfrac{1}{c}\ge\dfrac{\left(2+3+1\right)^2}{2a+3b+c}=\dfrac{36}{2a+3b+c}\)

\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}=\dfrac{9}{3a}+\dfrac{1}{b}+\dfrac{4}{2c}\ge\dfrac{\left(3+1+2\right)^2}{3a+b+2c}=\dfrac{36}{3a+2b+c}\)

Cộng theo vế: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36F\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6F\)

Mặt khác: \(ab+bc+ac=3abc\Leftrightarrow\dfrac{ab+bc+ac}{abc}=3\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\Rightarrow18\ge36F\Leftrightarrow F\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
15 tháng 5 2018

Lời giải:

ĐKXĐ: \(y\in \mathbb{R}\)

Ta có: \(\sqrt{y^2+12}+5=3y+\sqrt{y^2+5}\)

\(\Leftrightarrow \sqrt{y^2+12}-2y=(y-2)+(\sqrt{y^2+5}-3)\)

\(\Leftrightarrow \frac{y^2+12-4y^2}{\sqrt{y^2+12}+2y}=(y-2)+\frac{y^2+5-9}{\sqrt{y^2+5}+3}\)

\(\Leftrightarrow \frac{-3(y-2)(y+2)}{\sqrt{y^2+12}+2y}=(y-2)+\frac{(y-2)(y+2)}{\sqrt{y^2+5}+3}\)

\(\Leftrightarrow (y-2)\left[1+\frac{y+2}{\sqrt{y^2+5}+3}+\frac{3(y+2)}{\sqrt{y^2+12}+2y}\right]=0\)

Ta thấy: \(3y+\sqrt{y^2+5}=\sqrt{y^2+12}+5>\sqrt{y^2+5}+5\)

\(\Rightarrow 3y>5>0\Rightarrow y>0\)

Với $y>0$ thì biểu thức trong ngoặc lớn luôn lớn hơn $0$

Do đó \(y-2=0\Leftrightarrow y=2\)

Thử lại thấy thỏa mãn.

AH
Akai Haruma
Giáo viên
15 tháng 5 2018

Lời giải:

Rút gọn \(x=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}=4-\sqrt{15}\)

Gọi $x_0$ là một nghiệm nữa của pt đã cho (chưa cần biết phân biệt hay không).

Theo định lý Viete ta có: \(\left\{\begin{matrix} 4-\sqrt{15}+x_0=\frac{-b}{a}(1)\\ (4-\sqrt{15})x_0=\frac{1}{a}(2)\end{matrix}\right.\)

\((2)\Rightarrow x_0=\frac{1}{a(4-\sqrt{15})}=\frac{4+\sqrt{15}}{a}\)

Thay vào (1):

\(4-\sqrt{15}+x_0=4-\sqrt{15}+\frac{4+\sqrt{15}}{a}=\frac{-b}{a}\)

\(\Leftrightarrow a(4-\sqrt{15})+4+\sqrt{15}=-b\)

\(\Leftrightarrow (a-1)(4-\sqrt{15})=-b-8\)

Ta thấy vế phải là một số hữu tỉ nên vế trái cũng là số hữu tỉ

\((a-1)(4-\sqrt{15})\) là tích một số hữu tỉ nhân một số vô tỷ, để kết quả là một số hữu tỉ thì \(a-1=0\Rightarrow a=1\)

\(\Rightarrow b=-8\)

Vậy \((a,b)=(1,-8)\)

23 tháng 5 2018

x=(√5-√3)/(√5+√3)=(4-√15

a=0

x=1/b; b €Q=>1/b€Q=> 1/b≠4-√15=> a≠0

x=(-b±√∆)/(2a)=-b/(2a)±√∆/(2a)

x1=(4-√15)

a,b€Q=> -b/(2a)=4

√(b^2-4a)/(2a)=√15

16a^2-a=15a^2

a(a-1)=0

a≠0; a=1

a=1=> b =-8

14 tháng 5 2018

Ta có:

\(\dfrac{a}{1+9b^2}=a-\dfrac{9ab^2}{1+9b^2}\ge a-\dfrac{9ab^2}{6b}=a-\dfrac{3ab}{2}\)

\(\Rightarrow T\ge a+b+c-\dfrac{3}{2}\left(ab+bc+ca\right)\)

\(\ge a+b+c-\dfrac{1}{2}\left(a+b+c\right)^2=1-\dfrac{1}{2}=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

Lời giải:

a)

Ta có: \(\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}=\frac{\sqrt{3}-2+\sqrt{3}+2}{(\sqrt{3}+2)(\sqrt{3}-2)}=\frac{2\sqrt{3}}{3-4}=-2\sqrt{3}\)

Để \(B=\frac{1}{\sqrt{3}+2}+\frac{1}{\sqrt{3}-2}\Leftrightarrow \frac{2}{\sqrt{x}-2}=-2\sqrt{3}\)

\(\Leftrightarrow \frac{1}{\sqrt{x}-2}=-\sqrt{3}\)

\(\Leftrightarrow\sqrt{x}-2=\frac{-1}{\sqrt{3}}\)

\(\Leftrightarrow \sqrt{x}=2-\frac{1}{\sqrt{3}}\Rightarrow x=(2-\frac{1}{\sqrt{3}})^2=\frac{13-4\sqrt{3}}{3}\)

b)

ĐK: \(x\geq 0; x\neq 4\)

\(A=\frac{\sqrt{x}}{x-4}+\frac{1}{\sqrt{x}-2}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{(\sqrt{x}-2)(\sqrt{x}+2)}=\frac{\sqrt{x}}{x-4}+\frac{\sqrt{x}+2}{x-4}=\frac{2\sqrt{x}+2}{x-4}\)

\(P=\frac{B}{A}=\frac{2}{\sqrt{x}-2}:\frac{2(\sqrt{x}+1)}{x-4}=\frac{2(x-4)}{2(\sqrt{x}-2)(\sqrt{x}+1)}\)

\(=\frac{(\sqrt{x}+2)(\sqrt{x}-2)}{(\sqrt{x}-2)(\sqrt{x}+1)}=\frac{\sqrt{x}+2}{\sqrt{x}+1}\)

 

 

AH
Akai Haruma
Giáo viên
14 tháng 5 2018

c) Thêm ĐK: \(x\geq 1\)

Từ biểu thức P vừa tìm được:

\(P(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}+1}.(\sqrt{x}+1)-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow \sqrt{x}+2-\sqrt{x}+2\sqrt{x-1}=2x-2\sqrt{2x}+4\)

\(\Leftrightarrow 2\sqrt{x-1}=2x-2\sqrt{2x}+2\)

\(\Leftrightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2=0\)

\((\sqrt{x-1}-1)^2, (\sqrt{x}-\sqrt{2})^2\geq 0, \forall x\in \text{ĐKXĐ}\)

\(\Rightarrow (\sqrt{x-1}-1)^2+(\sqrt{x}-\sqrt{2})^2\geq 0\). Dấu bằng xảy ra khi :

\(\left\{\begin{matrix} \sqrt{x-1}-1=0\\ \sqrt{x}-\sqrt{2}=0\end{matrix}\right.\Leftrightarrow x=2\) (thỏa mãn)

Vậy..........

13 tháng 5 2018

Ta có :\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2=0\Leftrightarrow x^2+y^2+z^2+2xy+2yz+2zx=0\)

\(A=\dfrac{x^2+y^2+z^2}{\left(y-z\right)^2+\left(z-x\right)^2+\left(x-y\right)^2}\)

\(A=\dfrac{x^2+y^2+z^2}{y^2-2yz+z^2+z^2-2zx+x^2+x^2-2xy+y^2}\)

\(A=\dfrac{x^2+y^2+z^2}{2x^2+2y^2+2z^2-2xy-2yz-2zx}\)

\(A=\dfrac{x^2+y^2+z^2}{3x^2+3y^2+3z^2-\left(x^2+y^2+z^2+2xy+2yz+2zx\right)}\)

\(A=\dfrac{x^2+y^2+z^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1}{3}\)

13 tháng 5 2018

x+y+z=0

x=y=z=0=> A ko xac dinh

kl

gt cua A tren may tinh duoc

13 tháng 5 2018

đề phải là OM=R/3 mới đúng chứ bạn

bạn tự vẽ hình theo đề OM=R/3 nha:

a) có \(\widehat{CND}=90^o\) (góc nt chắn nửa đường tròn)

hay \(\widehat{MND}=90^o\)

tứ giác OMND có \(\widehat{MND}+\widehat{MOD}=90^o+90^o=180^o\)

=> tứ giác OMND nội tiếp đường tròn

b)Có OM=R/3=OB/3 => BM=2/3 OB

tam giác CBD có BO là trung tuyến và BM=2/3 BO

=> M là trọng tâm của tam giác CBD

=> CM là trung tuyến của tam giác CBD

hay CK là trung tuyến

=> K là trung điểm của BD

\(\Delta KCB\)\(\Delta KDN\) có:
\(\widehat{CKB}=\widehat{DKN}\)(2 góc đối đỉnh)

\(\widehat{KCB}=\widehat{KDN}\)(cùng chắn cung BN)

\(\Rightarrow\Delta KCB\sim\Delta KDN\left(g.g\right)\)

\(\Rightarrow\dfrac{KC}{KD}=\dfrac{KB}{KN}\)

=> KC.KN=KB.KD

tam giác OBD vuông tại O

\(\Rightarrow BD=\sqrt{OB^2+OD^2}=\sqrt{R^2+R^2}=\sqrt{2R^2}=R\sqrt{2}\)

=> \(KB=KD=\dfrac{BD}{2}=\dfrac{R\sqrt{2}}{2}\)

=> KC.KN=\(\dfrac{R\sqrt{2}}{2}.\dfrac{R\sqrt{2}}{2}=\dfrac{R^2}{2}\left(đpcm\right)\)

c) tam giác COM vuông tại O

\(\Rightarrow CM=\sqrt{CO^2+OM^2}=\sqrt{R^2+\left(\dfrac{R}{3}\right)^2}=\dfrac{R\sqrt{10}}{3}\)

\(\Delta COM\)\(\Delta CND\) có:

\(\widehat{OCM}chung\)

\(\widehat{COM}=\widehat{CND}=90^o\)

\(\Rightarrow\Delta COM\sim\Delta CND\left(g.g\right)\)

\(\Rightarrow\dfrac{OM}{DN}=\dfrac{CM}{CD}\)

\(\Rightarrow DN=\dfrac{OM.CD}{CM}=\dfrac{\dfrac{R}{3}.2R}{\dfrac{R\sqrt{10}}{3}}=\dfrac{R\sqrt{10}}{5}\)

14 tháng 4 2019

ai gthich hộ chỗ cm K là tđiểm Bd với.Tại sao tam giác CBD có BO là trung tuyến và BM=2/3 OB thì M lại là trọng tâm của tam giác CBD ??

 

AH
Akai Haruma
Giáo viên
12 tháng 5 2018

Lời giải :

Ta thấy:

\(\left\{\begin{matrix} m^2+2\vdots n\\ n^2+2\vdots m\end{matrix}\right.\) \(\Rightarrow (m^2+2)(n^2+2)\vdots mn\)

\(\Leftrightarrow m^2n^2+2m^2+2n^2+4\vdots mn\)

\(\Rightarrow 2m^2+2n^2+4\vdots mn\)

\(\Leftrightarrow 2(m^2+n^2+2)\vdots mn\)

Vì $m,n$ đều lẻ nên \((2,mn)=1\Rightarrow m^2+n^2+2\vdots mn(*)\)

Mặt khác:

Một số chính phương thì chia $4$ dư $0,1$. Vì $m,n$ lẻ nên \(m^2\equiv n^2\equiv 1\pmod 4\)

\(\Rightarrow m^2+n^2+2\equiv 4\equiv 0\pmod 4\) hay \(m^2+n^2+2\vdots 4(**)\)

Từ \((*);(**)\)\((4,mn)=1\) nên \(m^2+n^2+2\vdots 4mn\)

Ta có đpcm.

15 tháng 5 2018

Ta thấy:

⎧⎩⎨m2+2⋮nn2+2⋮m{m2+2⋮nn2+2⋮m ⇒(m2+2)(n2+2)⋮mn⇒(m2+2)(n2+2)⋮mn

⇔m2n2+2m2+2n2+4⋮mn⇔m2n2+2m2+2n2+4⋮mn

⇒2m2+2n2+4⋮mn⇒2m2+2n2+4⋮mn

⇔2(m2+n2+2)⋮mn⇔2(m2+n2+2)⋮mn

m,nm,n đều lẻ nên (2,mn)=1⇒m2+n2+2⋮mn(∗)(2,mn)=1⇒m2+n2+2⋮mn(∗)

Mặt khác:

Một số chính phương thì chia 440,10,1. Vì m,nm,n lẻ nên m2≡n2≡1(mod4)m2≡n2≡1(mod4)

⇒m2+n2+2≡4≡0(mod4)⇒m2+n2+2≡4≡0(mod4) hay m2+n2+2⋮4(∗∗)m2+n2+2⋮4(∗∗)

Từ (∗);(∗∗)(∗);(∗∗)(4,mn)=1(4,mn)=1 nên m2+n2+2⋮4mnm2+n2+2⋮4mn

đúng thì tick nhé