Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Khẳng định nào sau đây đúng?
Tập giá trị của hàm số y=sin2x là
Nghiệm của phương trình cosx=cos12π là
Nghiệm của phương trình cot32x=3 là
Cho cấp số cộng (un) có số hạng đầu u1=2 và công sai d=5. Giá trị của u4 bằng
Cho dãy số (un) với un=sinnπ. Khi đó, dãy số (un)
Giá trị lớn nhất của hàm số y=3sinx là
Tập hợp tất cả các giá trị của tham số m để phương trình cos2x=m vô nghiệm là
Đường cong trong hình vẽ là đồ thị của một trong bốn hàm số nào sau đây?
Phương trình cos2x+4sinx+5=0 có bao nhiêu nghiệm trên khoảng (0;10π) ?
Cho (un) là cấp số nhân, đặt Sn=u1+u2+...+un. Biết u2+S4=43,S3=13. Tổng S6 bằng
Các nghiệm của phương trình cos2x−sin2x=0 là
Cho góc x thỏa mãn sinx=−53 và π<x<23π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosx>0. |
|
b) cosx=−54. |
|
c) tanx=43. |
|
d) cotx=34. |
|
Chiều cao so với mực nước biển trung bình tại thời điểm t của mỗi cơn sóng được cho bởi hàm số h(t)=75sin(8πt), trong đó h(t) được tính bằng centimét.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Chiều cao của sóng tại các thời điểm 5 giây bằng 69,3 cm. |
|
b) Chiều cao của sóng tại các thời điểm 20 giây bằng 75 cm. |
|
c) Trong 30 giây đầu tiên, thời điểm để sóng đạt chiều cao lớn nhất là 6 giây. |
|
d) Trong 30 giây đầu tiên, có 3 thời điểm để sóng đạt chiều cao lớn nhất. |
|
Người ta trồng 3240 cây theo một hình tam giác như sau: hàng thứ nhất trồng 1 cây, hàng thứ hai trồng 2 cây, hàng thứ ba trồng 3 cây, …
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Số cây mỗi hàng lập thành một cấp số cộng (un) có số hạng đầu là u1=1. |
|
b) Số cây mỗi hàng lập thành một cấp số cộng (un) có công sai là d=2. |
|
c) Có tất cả 80 hàng cây. |
|
d) Hàng thứ 20 trồng được 40 cây. |
|
Cho góc lượng giác α, sao cho cotα=2+1,0<α<2π.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) cosα>0 và sinα>0. |
|
b) tanα=2+1. |
|
c) sinα=22−2. |
|
d) cosα=22+2. |
|
Từ một vị trí A, người ta buộc hai sợi cáp AB và AC đến một cái trụ cao 15 m, được dựng vuông góc với mặt đất, chân trụ ở vị trí D. Biết CD=9 m và AD=12 m. Tìm góc nhọn α=BAC tạo bởi hai sợi dây cáp đó, đồng thời tính gần đúng α (làm tròn đến hàng phần mười, đơn vị độ).
Trả lời:
Trong môn cầu lông, khi phát cầu, người chơi cần đánh cầu qua khỏi lưới sang phía sân đối phương và không được để cho cầu rơi ngoài biên. Trong mặt phẳng toạ độ Oxy, chọn điểm có tọa độ (O;y0) là điểm xuất phát thì phương trình quỹ đạo của cầu lông khi rời khỏi mặt vợt là: y=2.v02.cos2α−g.x2+tan(α).x+y0; trong đó: g là gia tốc trọng trường (thường được chọn là 9,8 m/s2; α là góc phát cầu (so với phương ngang của mặt đất); v0 là vận tốc ban đầu của cầu; y0 là khoảng cách từ vị trí phát cầu đến mặt đất. Quỹ đạo chuyển động của quả cầu lông là một parabol như hình vẽ.
Một người chơi cầu lông đang đứng khoảng cách từ vị trí người này đến vị trí cầu rơi chạm đất (tầm bay xa) là 6,68 m. Người chơi đó đã phát cầu với góc tối đa khoảng bao nhiêu độ so với mặt đất? (biết cầu rời mặt vợt ở độ cao 0,7 m so với mặt đất và vận tốc xuất phát của cầu là 8 m/s, bỏ qua sức cản của gió và xem quỹ đạo của cầu luôn nằm trong mặt phẳng thẳng đứng, làm tròn kết quả tới hàng đơn vị).
Trả lời:
Biết rằng dãy số {u1=2un+1=un+2 bị chặn trên bởi a. Tìm a.
Trả lời:
Cô Lan đang tiết kiệm để mua laptop. Trong tuần đầu tiên, cô ấy để dành 200 đô la, và trong mỗi tuần tiếp theo, cô đã thêm 16 đô la vào tài khoản tiết kiệm của mình. Chiếc laptop cô Lan cần mua có giá 1000 đô la. Vào tuần thứ bao nhiêu thì cô ấy có đủ tiền để mua chiếc laptop đó?
Trả lời:
Nguời ta thiết kế một cái tháp gồm 10 tầng theo cách: Diện tích bề mặt trên của mỗi tầng bằng nửa diện tích bề mặt trên của tầng ngay bên dưới và diện tích bề mặt của tầng 1 bằng nửa diện tích bề mặt đế tháp. Biết diện tích bề mặt đế tháp là 12288 m2, tính diện tích bề mặt trên cùng của tháp (đơn vị mét vuông).
Trả lời:
Một sợi cáp R được gắn vào một cột thẳng đứng ở vị trí cách mặt đất 14 m. Một sợi cáp S khác cũng được gắn vào cột đó ở vị trí cách mặt đất 12 m. Biết rằng hai sợi cáp trên cùng được gắn với mặt đất tại một vị trí cách chân cột 15 m (Hình vẽ).
Tìm góc α (làm tròn kết quả đến hàng đơn vị theo đơn vị độ).
Trả lời: