Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=4−x2x−3. Khẳng định nào sau đây đúng?
Cho đồ thị (C) của hàm số y=−x3+3x2−5x+2. Trong các mệnh đề sau, mệnh đề nào đúng?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên sau:
Khẳng định nào sau đây đúng?
Đường thẳng y=ax+b với a,b∈R và a=0 là tiệm cận xiên của đồ thị hàm số y=f(x). Mệnh đề nào sau đây đúng?
Đồ thị hàm số y=3x2+x+2 và trục tung có bao nhiêu điểm chung?
Giá trị của a,b để hàm số y=x+1ax+b có đồ thị như hình vẽ dưới là
Cho tứ diện ABCD. Gọi G là trọng tâm tam giác ABC. Giá trị của k thích hợp điền vào đẳng thức vectơ DA+DB+DC=kDG là
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(1;−1;1), B(3;2;−2), C(−3;1;5). Tọa độ điểm D thỏa mãn AB=CD là
Trong không gian Oxyz, cho vectơ a=2i+j−2k. Độ dài của vectơ a bằng
Cho hàm số y=sin2x+sinx+1sinx+1. Gọi M là giá trị lớn nhất và m là giá trị nhỏ nhất của hàm số đã cho. Giá trị của M−m là
Cho hàm số y=x+32x−1. Diện tích hình giới hạn bởi 2 trục tọa độ và đường tiệm cận của đồ thị hàm số đã cho là
Giá trị lớn nhất của hàm số y=x4−2x2+3 trên đoạn [0;3] là
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ:
a) Phương trình 2f(x)=5 có 3 nghiệm. |
|
b) Hàm số đồng biến trên khoảng (−3;5). |
|
c) Giá trị lớn nhất của hàm số trên [−1;2] bằng 1. |
|
d) Hàm số đã cho có 2 cực trị. |
|
Một loại thuốc được dùng cho một bệnh nhân và nồng độ thuốc trong máu của bệnh nhân được giám sát bởi bác sĩ. Biết rằng nồng độ thuốc trong máu của bệnh nhân sau khi tiêm vào cơ thể trong t giờ được cho bởi hàm số có công thức c(t)=t2+1t (mg/L).
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Nồng độ thuốc trong máu của bệnh nhân sau 3 giờ là c(3)=103 (mg/L). |
|
b) Đạo hàm của hàm số c(t)=t2+1t là c′(t)=(t2+1)21−t2. |
|
c) Nồng độ thuốc trong máu bệnh nhân tăng trong khoảng t∈(0;2). |
|
d) Nồng độ thuốc trong máu của bệnh nhân cao nhất khi t=21. |
|
Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của ba lực F1,F2,F3, có độ lớn lần lượt là 24 N, 12 N, 6 N. Biết góc tạo bởi hai lực F1,F2 là 120∘ và lực thứ ba vuông góc với hai lực đầu tiên.
Trong đó điểm D là đỉnh của hình bình hành OBDA và E là đỉnh của hình bình hành OCED.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) BO+BA=BD. |
|
b) OE=OA+OB+OC. |
|
c) Độ dài vectơ OD là 127. |
|
d) Độ lớn hợp lực tác dụng vào vật O là 613 N. |
|
Ban đầu bạn An ở vị trí điểm A muốn đến điểm C ở bên bờ sông. Biết rằng An đứng đối diện và cách chiếc cọc tại điểm B một khoảng cách 10 km. Khi sang sông, An sẽ đến vị trí điểm M bất kì thuộc đoạn thẳng BC.
Biết trên sông, An di chuyển với vận tốc 30 km/h và trên đất liền, An di chuyển với vận tốc 50 km/h. Tính 5MB+3MC (đơn vị km) để bạn An đến vị trí điểm C nhanh nhất?
Trả lời:
Một xí nghiệp A chuyên cung cấp sản phẩm S cho nhà phân phối B. Hai bên thỏa thuận rằng, nếu đầu tháng B đặt hàng x tạ sản phẩm S thì giá bán mỗi tạ sản phẩm S là P(x)=6−0,0005x2 (triệu đồng) (x≤40). Chi phí A phải bỏ ra cho x tạ sản phẩm S trong một tháng là C(x)=10+3,5x (triệu đồng) và mỗi sản phẩm bán ra phải chịu thêm mức thuế là 1 triệu đồng. Trong một tháng B cần đặt hàng bao nhiêu tạ sản phẩm S thì A có được lợi nhuận lớn nhất, kết quả làm tròn đến hàng phần mười.
Trả lời:
Có ba lực cùng tác động vào một vật. Hai trong ba lực này hợp với nhau một góc 100∘ và có độ lớn lần lượt là 25 N và 12 N. Lực thứ ba vuông góc với mặt phẳng tạo bởi hai lực đã cho và có độ lớn 4 N. Tính độ lớn của hợp lực của ba lực trên. (làm tròn đến hàng đơn vị)
Trả lời:
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời:
Cho hàm số y=g(x)=ax4+bx3+cx2+dx+e có đồ thị như hình vẽ dưới đây.
Hàm số y=f(x)=g[g(x)] có bao nhiêu điểm cực tiểu?
Trả lời:
Có tất cả bao nhiêu giá trị nguyên của tham số m thuộc [−2025;2025] để hàm số y=ln(x2+2024)−mx+2025 đồng biến trên R?
Trả lời: