Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:
Đề kiểm tra giữa học kì I (đề số 2) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây đúng?
Cho hàm số y=f(x) có đạo hàm f′(x)=(x−2024)2024(x−2025)2025,∀x∈R. Số điểm cực đại của hàm số đã cho là
Giá trị lớn nhất của hàm số y=x3−23x2+1 trên khoảng (−25;1011) là
Cho hàm số y=f(x) có bảng xét dấu đạo hàm như sau.
Mệnh đề nào sau đây đúng?
Đồ thị hàm số y=x−15 có tiệm cận ngang là đường thẳng nào dưới đây?
Điểm nào sau đây thuộc đồ thị của hàm số y=x4−3x2−5?
Trong không gian Oxyz với i,j,k lần lượt là vectơ đơn vị của các trục Ox,Oy,Oz, toạ độ của vectơ a=2i+3k là
Hàm số nào dưới đây có bảng biến thiên như hình vẽ trên?
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC có ba đỉnh A(−1;1;−3), B(4;2;1), C(3;0;5). Tọa độ trọng tâm G của tam giác ABC là
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Đặt SA=a;SB=d;SC=c; SD=b. Khẳng định nào sau đây đúng?
Trong bốn hàm số dưới đây, hàm số nào có bảng biến thiên như hình vẽ?
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Hàm số có giá trị cực đại bằng 3. |
|
b) Hàm số có hai điểm cực trị. |
|
c) Hàm số có giá trị lớn nhất bằng 1, nhỏ nhất bằng −31. |
|
d) Đồ thị hàm số không cắt trục hoành. |
|
Một bể chứa 5000 lít nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ 30 gam muối cho mỗi lít nước với tốc độ 25 lít/phút.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) Sau 10 phút bơm số lượng muối trong bể là 300 gam. |
|
b) Nếu bơm trong một giờ đồng hồ thì số lượng muối trong bể không vượt quá 2 kg. |
|
c) Nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là f(t)=200+t30t. |
|
d) Khi t đủ lớn thì nồng độ muối trong bể sẽ tiến gần đến mức 30 (gam/lít). |
|
Ông An muốn xây một cái bể chứa nước lớn dạng một khối hộp chữ nhật không nắp có thể tích bằng 288 m3. Đáy bể là hình chữ nhật có chiều dài gấp đôi chiều rộng, giá thuê nhân công để xây bể là 500000 đồng/m2. Ba kích thước của bể được mô tả như hình vẽ dưới (a (m) >0; c (m) >0).
Nếu ông An biết xác định các kích thước của bể hợp lí thì chi phí thuê nhân công sẽ thấp nhất (Biết độ dày thành bể và đáy bể không đáng kể).
a) Diện tích các mặt cần xây là S=2a2+6ac m2. |
|
b) 2a2c=280. |
|
c) Diện tích các mặt cần xây nhỏ nhất là 216 m2. |
|
d) Chi phí thấp nhất để xây dựng bể đó là 108 triệu đồng. |
|
Cho hình hộp ABCD.A′B′C′D′. Gọi I và K lần lượt là tâm của hình bình hành ABB′A′ và BCC′B′.
(Nhấp vào ô màu vàng để chọn đúng / sai)
a) IK=21AC. |
|
b) IK=21A′C′. |
|
c) BD+2IK=BC. |
|
d) Ba vectơ BD;IK;B′C′ không đồng phẳng. |
|
Người ta muốn làm một cái bể dạng hình hộp chữ nhật không nắp (như hình vẽ) có thể tích bằng 1 m3. Chiều cao của bể là 5dm, các kích thước khác là x m, y m với x>0 và y>0. Diện tích toàn phần của bể (không kể nắp) là hàm số S(x) trên khoảng (0;+∞).
Đường tiệm cận xiên của đồ thị hàm số S(x) là đường thẳng y=ax+b. Tính P=a2+b2.
Trả lời:
Một con cá hồi bơi ngược dòng để vượt khoảng cách là 300 km, vận tốc dòng nước là 6 km/h. Nếu vận tốc bơi của cá khi nước đứng yên là v (km/h) thì năng lượng tiêu hao của cá trong t giờ được cho bởi công thức E(v)=cv3t, trong đó c là hằng số và E tính bằng Jun. Tính vận tốc bơi của cá (km/h) khi nước đứng yên để năng lượng tiêu hao ít nhất.
Trả lời:
Ban đầu bạn An ở vị trí điểm A muốn đến điểm C ở bên bờ sông. Biết rằng An đứng đối diện và cách chiếc cọc tại điểm B một khoảng cách 10 km. Khi sang sông, An sẽ đến vị trí điểm M bất kì thuộc đoạn thẳng BC.
Biết trên sông, An di chuyển với vận tốc 30 km/h và trên đất liền, An di chuyển với vận tốc 50 km/h. Tính 5MB+3MC (đơn vị km) để bạn An đến vị trí điểm C nhanh nhất?
Trả lời:
Một chất điểm chuyển động theo quy luật và quãng đường di chuyển được sau t giây được tính theo công thức S(t)=−3t3+243t2 (m). Vận tốc v (m/s) của chuyển động đạt giá trị lớn nhất khi t bằng bao nhiêu giây?
Trả lời:
Một chiếc ô tô được đặt trên mặt đáy dưới của một khung sắt dạng hình hộp chữ nhật với đáy trên là hình chữ nhật ABCD, mặt phẳng (ABCD) song song với mặt phẳng nằm ngang. Khung sắt đó được đặt vào móc E của chiếc cần cẩu sao cho các đoạn dây cáp EA;EB;EC;ED bằng nhau và cùng tạo với mặt phẳng (ABCD) một góc α.
Chiếc cần cẩu kéo khung sắt lên theo phương thẳng đứng. Biết các lực căng F1;F2;F3;F4 đều có cường độ là 4800N, trọng lượng của cả khung sắt chứa xe ô tô là 72006N. Tính sinα. (làm tròn kết quả đến chữ số hàng phần trăm).
Trả lời:
Một chiếc đèn chùm treo có khối lượng m=7 kg được thiết kế với đĩa đèn được giữ bởi bốn đoạn xích SA,SB,SC,SD sao cho S.ABCD là hình chóp tứ giác đều có ASC=50∘. Tính độ lớn của lực căng cho mỗi sợi xích khi đèn đứng yên. (Làm tròn kết quả đến chữ số thập phân thứ nhất, đơn vị N)
Trả lời: