Bài học cùng chủ đề
Báo cáo học liệu
Mua học liệu
Mua học liệu:
-
Số dư ví của bạn: 0 coin - 0 Xu
-
Nếu mua học liệu này bạn sẽ bị trừ: 0 coin\Xu
Để nhận Coin\Xu, bạn có thể:

Đề kiểm tra giữa học kì I (đề số 1) SVIP
Yêu cầu đăng nhập!
Bạn chưa đăng nhập. Hãy đăng nhập để làm bài thi tại đây!
Cho hàm số y=f(x) có đạo hàm y=f′(x)=x(x−2),∀x∈R. Hàm số y=f(x) nghịch biến trên khoảng nào dưới đây?
Cho hàm số y=f(x) có đạo hàm f′(x)=(x2−4)(3−x)(x+2), ∀x∈R. Số điểm cực trị của hàm số là
Cho hàm số bậc ba y=f(x) có đồ thị như hình vẽ:
Trên đoạn [0;1], hàm số y=f(x) đạt giá trị nhỏ nhất tại
Đồ thị hàm số y=x−1x+2 có bao nhiêu đường tiệm cận?
Cho hàm số y=f(x) xác định trên R\{−1}, liên tục trên mỗi khoảng xác định và có bảng biến thiên như hình sau:
Số giao điểm của đường thẳng y=1 và đồ thị của hàm số y=f(x) là
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
Cho hình lập phương ABCD.A1B1C1D1 có tâm O. Đẳng thức nào sau đây đúng?
Trong không gian Oxyz với i,j,k lần lượt là vectơ đơn vị của các trục Ox,Oy,Oz, cho a=2i+k−3j. Tọa độ của a là
Tích của giá trị nhỏ nhất và giá trị lớn nhất của hàm số y=f(x)=x+x4 trên đoạn [1;3] bằng
Cho ba hàm số: y=x2−32x2−x+1;y=2x2+x+3x2−x+1 và y=x2+3x+22x2. Có bao nhiêu hàm số mà đồ thị hàm số có tiệm cận ngang là đường thẳng y=2?
Tập giá trị của hàm số y=x−3+5−x là
Cho hàm số y=f(x) liên tục và có đồ thị trên đoạn [−2;4] như hình vẽ.
a) Trên đoạn [−2;4], đồ thị hàm số y=f(x) có 2 điểm cực trị. |
|
b) Giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;2] là −2. |
|
c) Giá trị lớn nhất của hàm số y=f(x) trên đoạn [1;4] là −4. |
|
d) Hiệu giữa giá trị lớn nhất và giá trị nhỏ nhất của hàm số y=f(x) trên đoạn [−2;4] là 11. |
|
Cho hàm số y=x−23x−2 có đồ thị (C) và đường thẳng d:y=x+1.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) (C) cắt trục hoành tại điểm có hoành độ x=2. |
|
b) Đường tiệm cận ngang của đồ thị hàm số (C) là y=32. |
|
c) Giao điểm của (C) với trục tung là N(0;−2). |
|
d) Đường thẳng d cắt (C) tại hai điểm A và B thì tọa độ trung điểm M của đoạn thẳng AB là M(2;3). |
|
Một khúc gỗ có dạng hình khối nón có bán kính đáy r=2 m, chiều cao l=6 m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ.
a) Đặt x là bán kính đáy hình trụ, h là chiều cao của hình trụ. Khi đó chiều cao của khối trụ tính theo bán kính đáy hình trụ là h=−3x+6 (m) với 0<x<2. |
|
b) Hàm số xác định thể tích của khối trụ trên là V=6x2−3x3 (m3), ∀x∈(0;2). |
|
c) Giả sử bác thợ mộc chế tác khúc gỗ đó thành hình trụ có bán kính đáy bằng chiều cao, khi đó thể tích của khối trụ là V=827π (m3). |
|
d) Thể tích lớn nhất của khối gỗ mà bác thợ mộc chế tác là Vmax=932π (m3). |
|
Một vật nặng O được kéo từ ba hướng như hình vẽ và chịu tác dụng của ba lực F1,F2,F3, có độ lớn lần lượt là 24 N, 12 N, 6 N. Biết góc tạo bởi hai lực F1,F2 là 120∘ và lực thứ ba vuông góc với hai lực đầu tiên.
Trong đó điểm D là đỉnh của hình bình hành OBDA và E là đỉnh của hình bình hành OCED.
(Nhấp vào ô màu vàng để chọn đúng / sai)a) BO+BA=BD. |
|
b) OE=OA+OB+OC. |
|
c) Độ dài vectơ OD là 127. |
|
d) Độ lớn hợp lực tác dụng vào vật O là 613 N. |
|
Độ giảm huyết áp của một bệnh nhân được xác định bởi công thức G(x)=0,024x2(30−x), trong đó x là liều lượng thuốc tiêm cho bệnh nhân cao huyết áp (x được tính bằng mg). Tìm lượng thuốc x tiêm cho bệnh nhân cao huyết áp để huyết áp giảm nhiều nhất.
Trả lời:
Một doanh nghiệp dự định sản xuất không quá 400 sản phẩm. Nếu doanh nghiệp sản xuất x sản phẩm (1≤x≤400) thì doanh thu nhận được khi bán hết số sản phẩm đó là F(x)=x3−1999x2+1001000x+250000 (đồng). Trong đó chi phí vận hành máy móc cho mỗi sản phẩm là G(x)=23x+1100000x (đồng). Tổng chi phí mua nguyên vật liệu là H(x)=2x3+100000x−50000 (đồng) nhưng do doanh nghiệp đó mua nguyên vật liệu với số lượng lớn nên được giảm 1% cho 200 sản phẩm đầu tiên doanh nghiệp sản xuất và giảm 2% cho sản phẩm tiếp theo. Doanh nghiệp cần sản xuất bao nhiêu sản phẩm để lợi nhuận thu được là lớn nhất?
Trả lời:
Hình vẽ trên minh hoạ một chiếc đèn được treo cách trần nhà là 0,5 m, cách hai tường lần lượt là 1,2 m và 1,6 m. Hai bức tường vuông góc với nhau và cùng vuông góc với trần nhà. Người ta di chuyển chiếc đèn đó đến vị trí mới cách trần nhà là 0,4 m, cách hai tường đều là 1,5 m. Vị trí mới của bóng đèn cách vị trí ban đầu là bao nhiêu mét? (Làm tròn kết quả đến chữ số thập phân thứ hai)
Trả lời:
Một bể chứa 2 m3 nước tinh khiết. Người ta bơm vào bể đó nước muối có nồng độ không đổi với tốc độ 20 lít/phút. Biết rằng nồng độ muối trong bể sau t phút (tính bằng tỉ số của khối lượng muối trong bể và thể tích nước trong bể, đơn vị: gam/lít) là một hàm số f(t), thời gian t tính bằng phút. Biết rằng tiệm cận ngang của đồ thị hàm số y=f(t) là y=10. Tính nồng độ muối trong bể sau khi bơm được 1 giờ. (làm tròn kết quả đến hàng phần trăm, đơn vị gam/lít)
Trả lời:
Cho hàm số bậc bốn y=f(x) có f(1)=0. Biết đồ thị hàm số y=f′(x) được cho như hình dưới đây:
Xét hàm số g(x)=∣f(1+2x)+8x2∣. Đặt M là số điểm cực đại và m là số điểm cực tiểu của hàm số g(x). Tính giá trị biểu thức m2+m2.
Trả lời:
Hàm số y=(x+m)3+(x+n)3−x3 đồng biến trên khoảng (−∞;+∞). Giá trị nhỏ nhất của biểu thức P=100[4(m2+n2)−m−n] bằng bao nhiêu? (Làm tròn kết quả đến chữ số thập phân thứ nhất)
Trả lời: