ta có\(\sqrt[3]{8+3\sqrt{21}}\)+\(\sqrt[3]{8-3\sqrt{21}}\)=A
=> A3=8+3\(\sqrt{21}\)+8-3\(\sqrt{21}\)+3\(\sqrt[3]{\left(8+3\sqrt{21}\right)\left(8-3\sqrt{21}\right)}\).A
=> A3=16+3\(\sqrt[3]{64-189}\).A
=> A3=16+3.(-5).A
=> A3=16-15A
=> A3+15A -16=0
=> A3-A2+A2-A+16A-16=0
=>A2(A-1)+A(A-1)+16(A-1)=0
=>(A-1)(A2+A+16)=0
=> A-1 =0 hoặc A2+A+16=0(vô lí vì A2+A+1/4≥0)
=> A =1
Vậy A=1
Bình luận (0)