Nguyễn Sơn Hà

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Sơn Hà
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Ta có O1^+O3^=90∘ và O2^+O3^=90∘ suy ra O1^=O2^.

Mặt khác A1^=B1^=45∘.

Xét ΔAOP và ΔBOR có

    OA=OB ( giả thiết)

    A1^=B1^=45∘

    O1^=O2^ (chứng minh trên)

Suy ra ΔAOP=ΔBOR (g.c.g)

b) Từ ΔAOP=ΔBOR suy ra OP=OR (hai cạnh tương ứng)

Chứng minh tương tự cho ΔOBR=ΔOCQ và ΔOCQ=ΔODS

Suy ra OR=OQ và OQ=OS.

Khi đó OP=OR=OS=OQ.

c) Tứ giác PRQS là hình thoi vì có bốn cạnh bằng nhau.

Mà ΔOPR có OP=OR và POR^=90∘ nên ΔOPR là tam giác vuông cân tại O

Suy ra P1^=45∘.

Tương tự P2^=45∘ nên RPS^=P1^+P2^=90∘.

Hình thoi PRQS có RPS^=90∘ nên nó là hình vuông.