TRẦN KHÁNH NGỌC

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của TRẦN KHÁNH NGỌC
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

loading...

a) Tứ giác \(A E D F\) có \(\hat{E A F} = \hat{A E D} = \hat{A F D} = 90^{\circ}\) nên là hình chữ nhật.

\(\Delta A B C\) vuông cân tại \(A\) có \(A M\) là trung tuyến nên \(A M\) cũng là đường phân giác \(\hat{E A F}\).

Hình chữ nhật \(A E D F\) có đường chéo \(A D\) là tia phân giác \(\hat{E A F}\) nên là hình vuông.

b) \(\Delta A E F\) vuông tại \(A\) có \(A E = A F\) nên vuông cân tại \(A\)

Suy ra \(\hat{F_{1}} = 45^{\circ} = \hat{C}\) mà \(\hat{F_{1}} , \hat{C}\) đồng vị nên \(E F\) // \(B C .\)

c) Gọi \(O\) là giao của \(A D\) với \(E F\) suy ra \(O E = O D = O F = O A\)

\(\Delta E N F\) vuông tại \(N\) có \(N O\) là đường trung tuyến nên \(N O = E O = F O\)

\(\Delta A N D\) có \(N O\) là đường trung tuyến mà \(N O = \frac{A D}{2}\) suy ra \(\Delta A N D\) vuông tại \(N .\)

loading...

a) Tứ giác \(A D M E\) có \(\hat{D A E} = \hat{D} = \hat{E} = 90^{\circ}\) nên \(A D M E\) là hình chữ nhật.

b) Vì \(D M ⊥ A B\) và \(A C ⊥ A B\) nên \(D M\) // \(A C\) suy ra \(\hat{C} = \hat{B M D}\) (so le trong).

Xét \(\Delta D M B\) và \(\Delta E C M\) có:

     \(\hat{D} = \hat{E} = 90^{\circ}\)

     \(B M = C M\) (giả thiết)

     \(\hat{D M B} = \hat{C}\) (so le trong)

Vậy \(\Delta D M B = \Delta E C M\) (cạnh huyền - góc nhọn)

Suy ra \(M E = B D\) (hai cạnh tương ứng) mà \(M E = A D\) nên \(A D = B D\).

Tứ giác \(A M B I\) có hai đường chéo \(A B , M I\) cắt nhau tại \(D\) là trung điểm của mỗi đường nên là hình bình hành.

Mà \(M I ⊥ A B\) suy ra \(A M B I\) là hình thoi.

c) Để \(A M B I\) là hình vuông thì \(A M ⊥ B M\) hay \(A M\) vừa là đường trung tuyến vừa là đường cao nên \(\Delta A B C\) vuông cân tại \(A .\)

d) Giả sử \(A M\) cắt \(P Q\) tại \(F\) và \(P Q\) cắt \(A H\) tại \(O\).

Khi đó \(\Delta O A Q\) có \(O A = O Q\) nên \(\&\text{nbsp}; \Delta O A Q\) cân tại \(O\) suy ra \(\hat{Q_{1}} = \hat{O A Q}\)

\(\Delta A M C\) cân tại \(M\) suy ra \(\hat{A_{1}} = \hat{C}\)

Do đó, \(\hat{A_{1}} + \hat{Q_{1}} = \hat{C} + \hat{O A Q} = 90^{\circ}\)

Suy ra \(\Delta F A Q\) vuông tại \(F\) hay \(A M ⊥ P Q .\)

a) Tứ giác \(A B C D\) có hai đường chéo \(A C , B D\) cắt nhau tại trung điểm \(N\) của mỗi đường nên là hình bình hành.

b) Ta có \(A P ⊥ B C\)\(A Q\) // \(B C\) suy ra \(A P ⊥ A Q\).

Tứ giác \(A P C Q\) có ba góc vuông nên là hình chữ nhật.

Khi đó hai đường chéo \(A C , P Q\) cắt nhau tại trung điểm của mỗi đường, mà \(N A = N C\) nên \(N\) là trung điểm của \(P Q\).

Suy ra \(P , N , Q\) thẳng hàng.

c) Để tứ giác \(A B C D\) là hình vuông thì ta cần \(A B ⊥ B C , A B = B C\) hay \(\Delta A B C\) vuông cân tại \(B .\)

loading...

a) Ta có \(A D = B C\) suy ra \(\frac{A D}{2} = \frac{B C}{2}\) nên \(M C = N D\) và \(M C\) // \(N D\)

Do đó, \(M C D N\) là hình bình hành.

Lại có \(C D = A B = \frac{A D}{2} = N D\) nên \(M C D N\) là hình thoi

b) \(B M\) // \(A D\) suy ra \(A B M D\) là hình thang.

Mà \(\hat{A D C} = 120^{\circ}\) mà \(D M\) là phân giác \(\hat{A D C}\) nên \(\hat{A D M} = 60^{\circ} = \hat{B A D}\).

Vậy \(A B M D\) là hình thang cân.

c) \(\Delta K A D\) có \(\hat{K A D} = \hat{K D A}\) nên là tam giác cân.

Xét \(\Delta M B K\) và \(\Delta M C D\) có:

     \(M B = M C\) (giả thiết)

     \(\hat{M_{1}} = \hat{M_{2}}\) (đối đỉnh)

     \(\hat{B_{1}} = \hat{C}\) (so le trong)

Vậy \(\Delta M B K = \Delta M C D\) (g.c.g) suy ra \(M K = M D\) (hai cạnh tương ứng).

Khi đó \(A M\) là đường trung tuyến và \(B K = C D\) (hai cạnh tương ứng)

Mà \(C D = A B\) suy ra \(A B = B K\) hay \(D B\) là đường trung tuyến.

Khi đó, \(\Delta K A D\) có ba đường trung tuyến \(A M , B D , K N\) đồng quy.

a) Ta có \(\hat{O_{1}} + \hat{O_{3}} = 90^{\circ}\) và \(\hat{O_{2}} + \hat{O_{3}} = 90^{\circ}\) suy ra \(\hat{O_{1}} = \hat{O_{2}}\).

Mặt khác \(\hat{A_{1}} = \hat{B_{1}} = 45^{\circ}\).

Xét \(\Delta A O P\) và \(\Delta B O R\) có

    \(O A = O B\) ( giả thiết)

    \(\hat{A_{1}} = \hat{B_{1}} = 4 5^{\circ}\)

    \(\hat{O_{1}} = \hat{O_{2}}\) (chứng minh trên)

Suy ra \(\Delta A O P = \Delta B O R\) (g.c.g)

b) Từ \(\Delta A O P = \Delta B O R\) suy ra \(O P = O R\) (hai cạnh tương ứng)

Chứng minh tương tự cho \(\Delta O B R = \Delta O C Q\) và \(\Delta O C Q = \Delta O D S\)

Suy ra \(O R = O Q\) và \(O Q = O S\).

Khi đó \(O P = O R = O S = O Q .\)

c) Tứ giác \(P R Q S\) là hình thoi vì có bốn cạnh bằng nhau.

Mà \(\Delta O P R\) có \(O P = O R\) và \(\hat{P O R} = 90^{\circ}\) nên \(\Delta O P R\) là tam giác vuông cân tại \(O\)

Suy ra \(\hat{P_{1}} = 45^{\circ}\).

Tương tự \(\hat{P_{2}} = 45^{\circ}\) nên \(\hat{R P S} = \hat{P_{1}} + \hat{P_{2}} = 90^{\circ}\).

Hình thoi \(P R Q S\) có \(\hat{R P S} = 90^{\circ}\) nên nó là hình vuông.

a) Tứ giác \(D K M N\) có \(\hat{D} = \hat{K} = \hat{N} = 90^{\circ}\) nên là hình chữ nhật.

b) Vì \(D K M N\) là hình chữ nhật nên \(D F\) // \(M H\)

Xét \(\Delta K F M\) và \(\Delta N M E\) có:

     \(\hat{K} = \hat{N} = 90^{\circ}\)

     \(F M = M E\) ( giả thiết)

     \(\hat{K M F} = \hat{E}\) (đồng vị)

Vậy \(\Delta K F M = \Delta N M E\) (cạnh huyền - góc nhọn)

Suy ra \(K F = M N\) (hai cạnh tương ứng) mà \(M N = D K\) nên \(D F = 2 D K\) và \(M H = 2 M N\).

Do đó \(D F = M H\).

Tứ giác \(D F M H\) có \(D F\) // \(M H , D F = M H\) nên là hình bình hành.

Do đó, hai đường chéo \(D M , F H\) cắt nhau tại trung điểm \(O\) của mỗi đường hay \(F , O , H\) thẳng hàng.

c) Để hình chữ nhật \(D K M N\) là hình vuông thì \(D K = D N\) \(\left(\right. 1 \left.\right)\)

Mà \(D K = \frac{1}{2} D F\) và \(D N = K M = N E\) nên \(D N = \frac{1}{2} D E\) \(\left(\right. 2 \left.\right)\)

Từ \(\left(\right. 1 \left.\right) , \left(\right. 2 \left.\right)\) suy ra \(D F = D E\).

Vậy \(\Delta D F E\) cần thêm điều kiên cân tại \(D\).

a) Vì \(A B = 2 B C\) suy ra \(B C = \frac{A B}{2} = A D\)

\(A B C D\) là hình chữ nhật nên \(A B = D C\) suy ra \(\frac{1}{2} A B = \frac{1}{2} D C\) do đó \(A I = D K = A D\).

Tứ giác \(A I K D\) có \(A I\) // \(D K , A I = D K\) nên \(A I K D\) là hình bình hành.

Lại có \(A D = A I\) nên \(A I K D\) là hình thoi.

Mà \(\hat{I A D} = 90^{\circ}\) do đó \(A I K D\) là hình vuông.

Chứng minh tương tự cho tứ giác \(B I K C\)

b) Vì \(A I K D\) là hình vuông nên \(D I\) là tia phân giác \(\hat{A D K}\) hay \(\hat{I D K} = 45^{\circ}\).

Tương tự \(\hat{I C D} = 45^{\circ}\).

\(\Delta I D C\) cân có \(\hat{D I C} = 90^{\circ}\) nên là tam giác vuông cân.

c) Vì \(A I K D , B C K I\) là các hình vuông nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên \(S I = S K = \frac{D I}{2}\) và \(I R = R K = \frac{I C}{2}\)

Suy ra \(I S K R\) là hình thoi.

Lại có \(\hat{D I C} = 90^{\circ}\) nên \(I S K R\) là hình vuông.

a) \(A B C D\) là hình vuông nên \(A B = B C = C D = D A\)

Mà \(A M = B N = C P = D Q\).

Trừ theo vế ta được \(A B - A M = B C - B N = C D - C P = D A - D Q\)

Suy ra \(M B = N C = P D = Q A\)

b) Xét \(\Delta Q A M\) và \(\Delta N C P\) có:

\(\hat{A} = \hat{C} = 90^{\circ}\)

\(A Q = N C\) (chứng minh trên)

\(A M = C P\) (giả thiết)

Suy ra \(\Delta Q A M = \Delta N C P\) (c.g.c)

c) Từ \(\Delta Q A M = \Delta N C P\) suy ra \(N P = M Q\) (hai cạnh tương ứng).

Chứng minh tương tự câu b ta có \(\Delta Q A M = \Delta P D Q\) và \(\Delta Q A M = \Delta M B N\).

Khi đó \(\Rightarrow M Q = P Q , M N = M Q\) và \(\hat{A M Q} = \hat{D Q P}\).

Mà \(\hat{A M Q} + \hat{A Q M} = 90^{\circ}\) suy ra \(\hat{D Q P} + \hat{A Q M} = 90^{\circ}\).

Do đó, \(\hat{M Q P} = 90^{\circ}\).

Tứ giác \(M N P Q\) có bốn cạnh bằng nhau nên là hình thoi, lại có \(\hat{M Q P} = 90^{\circ}\) nên là hình vuông.

a) Tứ giác \(A M C K\) có hai đường chéo \(A C , M K\) cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

\(\Delta A B C\) vuông tại \(A\) có \(A M\) là đường trung tuyến nên \(A M = M C = M B\).

Vậy hình bình hành \(A M C K\) có \(A M = M C\) nên là hình thoi.

b) Vì \(A M C K\) là hình thoi nên \(A K\) // \(B M\) và \(A K = M C = B M\).

Tứ giác \(A K M B\) có \(A K\) // \(B M , A K = B M\) nên là hình bình hành.

c) Để \(A M C K\) là hình vuông thì cần có một góc vuông hay \(A M ⊥ M C\).

Khi đó \(\Delta A B C\) có \(A M\) vừa là đường cao vừa là đường trung tuyến nên cân tại \(A\).

Vậy \(\Delta A B C\) vuông cân tại \(A\) thì \(A M C K\) là hình vuông.

a) \(\Delta A B C\) vuông cân nên \(\hat{B} = \hat{C} = 45^{\circ} .\)

\(\Delta B H E\) vuông tại \(H\) có \(\hat{B E H} + \hat{B} = 90^{\circ}\)

Suy ra \(\hat{B E H} = 90^{\circ} - 45^{\circ} = 45^{\circ}\) nên \(\hat{B} = \hat{B E H} = 45^{\circ}\).

Vậy \(\Delta B E H\) vuông cân tại \(H .\)

b) Chứng minh tương tự câu a ta được \(\Delta C F G\) vuông cân tại \(G\) nên \(G F = G C\) và \(H B = H E\)

Mặt khác \(B H = H G = G C\) suy ra \(E H = H G = G F\) và \(E H\) // \(F G\) (cùng vuông góc với \(B C \left.\right)\)

Tứ giác \(E F G H\) có \(E H\) // \(F G , E H = F G\) nên là hình bình hành.

Hình bình hành \(E F G H\) có một góc vuông \(\hat{H}\) nên là hình chữ nhật

Hình chữ nhật \(E F G H\) có hai cạnh kề bằng nhau \(E H = H G\) nên là hình vuông.