Nguyễn Hải Phong

Giới thiệu về bản thân

Chào mừng các bạn đã ghé thăm nhà của mình !
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Nếu \(n\) lẻ thì \(n\) có dạng \(n = 2 k + 1\) với \(k \in \mathbb{N}\).

Do đó \(n^{3} = \left(\right. 2 k + 1 \left.\right)^{3} = 8 k^{3} + 12 k^{2} + 6 k + 1 = 2 \left(\right. 4 k^{3} + 6 k^{2} + 3 k \left.\right) + 1\).

Suy ra \(n^{3}\) lẻ.

Vậy với mọi số tự nhiên \(n\), nếu \(n\) lẻ thì \(n^{3}\) lẻ.

Do x, y là số nguyên dương nên 40x < 41x; 41 ≤41� , khi đó ta có:

( x + y )4 = 40x + 41 < 41x + 41y = 41( x + y )

Suy ra ( x + y )4 < 41( x + y )

⇔(�+�)3<41<64=43

⇒�+�<4( 1 )

Ta thấy x là số nguyên dương nên 40�+41≥40×1+41=81

⇒(�+�)4≥81

⇒�+�≥3 ( 2 )

Từ ( 1 ) và ( 2 ) suy ra 3≤�+�<4

Mà (�+�∈N∗)⇒�+�=3

Suy ra ( x ; y ) = (1; 2 ) ; ( 2 ; 1 ) ( do x, y là số nguyên dương )

Thử lại chỉ có x = 1 ; y = 2 thỏa mãn

Vậy x = 1 ; y = 2

Cbht