Mai Trung Hải Phong
Giới thiệu về bản thân
\(2\times99+2\)
\(=2\times\left(99+1\right)\)
\(=2\times100\)
\(=200\)
Ta có:\(C=1+2+2^2+2^3+...+2^{11}\)
\(=>2C=2+2^2+2^3+2^4+...+2^{12}\)
\(=>2C-C=2^{12}-1\)
\(=>C=2^{12}-1\)
Mà \(2^{12}-1\) lẻ \(=>\) C lẻ
\(=>\) C không chia hết cho 2,18
Mặt khác:
\(C=2^{12}-1=\left(2^3\right)^4-1=8^4-1\equiv\left(-1\right)^4-1\equiv0\left(mod9\right)\)
Vậy C chia hết cho 9 (đpcm)
a) \(261\times m+3105\times n\)
Ta có:
\(261⋮9\Rightarrow261\times m⋮9\)
\(3105⋮9\Rightarrow3105\times n⋮9\)
\(\Rightarrow261\times m+3105\times n⋮9\)
Mà \(261\times m+3105\times n>9\)
Vậy \(261\times m+3105\times n\) là bội của \(9\)
b) \(123\times m+1101\times n\)
Ta có:
\(123⋮3\Rightarrow123\times m⋮3\)
\(1101⋮3\Rightarrow1101\times n⋮3\)
\(\Rightarrow123\times m+1101\times n⋮3\)
Mà \(123\times m+1101\times m>3\)
Vậy...(kết luận tương tự câu a nhé)
\(2^{x+2}-2^x=96\)
\(\Rightarrow2^x.2^2-2^x=96\)
\(\Rightarrow2^x\left(2^2-1\right)=96\)
\(\Rightarrow2^x.3=96\)
\(\Rightarrow2^x=96:3\)
\(\Rightarrow2^x=32\)
\(\Rightarrow2^x=2^5\)
\(\Rightarrow x=5\)
\(5^n+5^{n+1}=30\)
\(\Rightarrow5^n+5^n+5=30\)
\(\Rightarrow5^n+5^n=30-5\)
\(\Rightarrow5^n+5^n=25\)
\(\Rightarrow5^n+5^n=5^2\)
\(\Rightarrow n+n=2\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=2:2\)
\(\Rightarrow n=1\)
\(5^{2x}.5^x=625\)
\(\Rightarrow5^{2x}.5^x=5^4\)
\(\Rightarrow2x.x=4\)
\(\Rightarrow2x^2=2^2\)
\(\Rightarrow2x=2\)
\(\Rightarrow x=2:2\)
\(\Rightarrow x=1\)
\(2\left(x-3\right)+5\left(x+4\right)=49\)
\(\Rightarrow2x-6+5x+20=49\)
\(\Rightarrow2x+5x=49+6-20\)
\(\Rightarrow7x=35\)
\(\Rightarrow x=35:7\)
\(\Rightarrow x=5\)
plays
\(2x^3-3x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)^3\)
\(=2x^3-2x^2\left(x^2-x+1\right)-x^2\left(x^2-x+1\right)+\left(x^2-x+1\right)^3\)
\(=2x^2\left(x^3-x^2+x-1\right)-\left(x^2-x+1\right)\left[x^2-\left(x^2-x-1\right)^2\right]\)
\(=2x^2\left(x-1\right)\left(x^2+1\right)-\left(x^2-x+1\right)\left(x^2+1\right)\left(-x^2+2x-1\right)\)
\(=2x\left(x-1\right)\left(x^2+1\right)+\left(x^2-x+1\right)\left(x^2+1\right)\left(x-1\right)^2\)
\(=\left(x^2+1\right)\left(x-1\right)\left(2x^2+x^3-x^2-x^2+x+x-1\right)\)
\(=\left(x^2+1\right)\left(x-1\right)\left(x^3+2x-1\right)\)
e) \(x^2-xy+x-y\)
\(=x\left(x-y\right)+\left(x-y\right)\)
\(=\left(x-y\right)\left(x+1\right)\)
f) \(xz+yz-5\left(x+y\right)\)
\(=z\left(x+y\right)-5\left(x+y\right)\)
\(=\left(x+y\right)\left(z-5\right)\)