

Nguyễn Quang Vinh
Giới thiệu về bản thân



































a) Thể tích của hình hộp chữ nhật đã cho là:
\(V = x \left(\right. x - 1 \left.\right) \left(\right. x + 1 \left.\right) = x^{3} - x\)
b) Tại \(x = 4\), thể tích của hình hộp chữ nhật là:
\(V = 4^{3} - 4 = 60\) (đơn vị thể tích)
5x(4x2−2x+1)−2x(10x2−5x+2)=−36
\(5 x . 4 x^{2} + 5 x . \left(\right. - 2 x \left.\right) + 5 x . 1 + \left(\right. - 2 x \left.\right) . 10 x^{2} + \left(\right. - 2 x \left.\right) . \left(\right. - 5 x \left.\right) + \left(\right. - 2 x \left.\right) . 2 = - 36\)
\(20 x^{3} + \left(\right. - 10 x^{2} \left.\right) + 5 x + \left(\right. - 20 x^{3} \left.\right) + 10 x^{2} + \left(\right. - 4 x \left.\right) = - 36\)
\(\left(\right. 20 x^{3} - 20 x^{3} \left.\right) + \left(\right. - 10 x^{2} + 10 x^{2} \left.\right) + \left(\right. 5 x - 4 x \left.\right) = - 36\)
\(x = - 36\)
Vậy \(x = - 36\).
a) \(P \left(\right. x \left.\right) + Q \left(\right. x \left.\right)\)
\(= \left(\right. x^{4} - 5 x^{3} + 4 x - 5 \left.\right) + \left(\right. - x^{4} + 3 x^{2} + 2 x + 1 \left.\right)\)
\(= x^{4} - 5 x^{3} + 4 x - 5 - x^{4} + 3 x^{2} + 2 x + 1\)
\(= \left(\right. x^{4} - x^{4} \left.\right) - 5 x^{3} + 3 x^{2} + \left(\right. 4 x + 2 x \left.\right) + \left(\right. 1 - 5 \left.\right)\)
\(= - 5 x^{3} + 3 x^{2} + 6 x - 4\)
b) \(R \left(\right. x \left.\right) = P \left(\right. x \left.\right) - Q \left(\right. x \left.\right)\)
\(= \left(\right. x^{4} - 5 x^{3} + 4 x - 5 \left.\right) - \left(\right. - x^{4} + 3 x^{2} + 2 x + 1 \left.\right)\)
\(= x^{4} - 5 x^{3} + 4 x - 5 + x^{4} - 3 x^{2} - 2 x - 1\)
\(= \left(\right. x^{4} + x^{4} \left.\right) - 5 x^{3} - 3 x^{2} + \left(\right. 4 x - 2 x \left.\right) + \left(\right. - 1 - 5 \left.\right)\)
\(= 2 x^{4} - 5 x^{3} - 3 x^{2} + 2 x - 6\)