Bùi Ngọc Ánh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Bùi Ngọc Ánh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

abc

Định lí: "Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau"

   

GT   

     a và b phân biệt   

     a // c     

     b // c

   

KL   

     a // b

Định lí: "Hai góc cùng phụ một góc thứ ba thì bằng nhau".

Hình vẽ:

O123

Giả thiết - Kết luận:

   

GT

   

     \(\hat{O_{1}} + \hat{O_{2}} = 9 0^{\circ}\)

     \(\hat{O_{2}} + \hat{O_{3}} = 9 0^{\circ}\)     

   

KL   

     

\(\hat{O_{1}} = \hat{O_{3}}\)

a) Nếu một đường thẳng cắt hai đường thẳng sao cho có một cặp góc so le trong bằng nhau thì hai đường thẳng đó song song.

b) Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.

a) Nếu một đường thẳng cắt hai đường thẳng song song thì hai góc so le trong bằng nhau.

b) Nếu hai đường thẳng phân biệt cùng vuông góc với một đường thẳng thứ ba thì chúng song song với nhau.


Định lí "Một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại."

    

GT  

  

     a // b     

     a \(\bot\) c     

    

KL  

     c

 \(\bot\) 

b     

 

1) \(\hat{B A E} = \hat{E A C}\) (giả thiết). (1)

Vì \(A B\) // \(E F\) nên \(\hat{B A E} = \hat{A E F}\) (hai góc so le trong). (2)

Vì \(A E\) // \(F I\) nên \(\hat{E A C} = \hat{I F C}\) (hai góc đồng vị). (3)

Vì \(A E\) // \(F I\) nên \(\hat{A E F} = \hat{E F I}\) (hai góc so le trong). (4)

Từ (1), (2), (3), (4) suy ra: \(\hat{B A E} = \hat{E A C} = \hat{A E F} = \hat{I F C} = \hat{E F I}\).

2) Từ chứng minh trên, ta có: \(\hat{E F I} = \hat{I F C}\) mà \(F I\) là tia nằm giữa hai tia \(F E\) và \(F C\).

Vậy \(F I\) là tia phân giác của \(\hat{E F C}\).

1) \(\hat{B A E} = \hat{E A C}\) (giả thiết). (1)

Vì \(A B\) // \(E F\) nên \(\hat{B A E} = \hat{A E F}\) (hai góc so le trong). (2)

Vì \(A E\) // \(F I\) nên \(\hat{E A C} = \hat{I F C}\) (hai góc đồng vị). (3)

Vì \(A E\) // \(F I\) nên \(\hat{A E F} = \hat{E F I}\) (hai góc so le trong). (4)

Từ (1), (2), (3), (4) suy ra: \(\hat{B A E} = \hat{E A C} = \hat{A E F} = \hat{I F C} = \hat{E F I}\).

2) Từ chứng minh trên, ta có: \(\hat{E F I} = \hat{I F C}\) mà \(F I\) là tia nằm giữa hai tia \(F E\) và \(F C\).

Vậy \(F I\) là tia phân giác của \(\hat{E F C}\).

1) \(\hat{B A E} = \hat{E A C}\) (giả thiết). (1)

Vì \(A B\) // \(E F\) nên \(\hat{B A E} = \hat{A E F}\) (hai góc so le trong). (2)

Vì \(A E\) // \(F I\) nên \(\hat{E A C} = \hat{I F C}\) (hai góc đồng vị). (3)

Vì \(A E\) // \(F I\) nên \(\hat{A E F} = \hat{E F I}\) (hai góc so le trong). (4)

Từ (1), (2), (3), (4) suy ra: \(\hat{B A E} = \hat{E A C} = \hat{A E F} = \hat{I F C} = \hat{E F I}\).

2) Từ chứng minh trên, ta có: \(\hat{E F I} = \hat{I F C}\) mà \(F I\) là tia nằm giữa hai tia \(F E\) và \(F C\).

Vậy \(F I\) là tia phân giác của \(\hat{E F C}\).

1) \(\hat{B A E} = \hat{E A C}\) (giả thiết). (1)

Vì \(A B\) // \(E F\) nên \(\hat{B A E} = \hat{A E F}\) (hai góc so le trong). (2)

Vì \(A E\) // \(F I\) nên \(\hat{E A C} = \hat{I F C}\) (hai góc đồng vị). (3)

Vì \(A E\) // \(F I\) nên \(\hat{A E F} = \hat{E F I}\) (hai góc so le trong). (4)

Từ (1), (2), (3), (4) suy ra: \(\hat{B A E} = \hat{E A C} = \hat{A E F} = \hat{I F C} = \hat{E F I}\).

2) Từ chứng minh trên, ta có: \(\hat{E F I} = \hat{I F C}\) mà \(F I\) là tia nằm giữa hai tia \(F E\) và \(F C\).

Vậy \(F I\) là tia phân giác của \(\hat{E F C}\).

                                                                           giải 

Hình bình hành có chiều rộng bằng cạnh của một tam giác đều và chiều dài gấp đôi cạnh tam giác đều.

Nửa chu vi hình bình hành 

 3.6 dm = 18 dm.

Chu vi hình bình hành 

2.18 = 36 dm.