Nguyễn Ngọc Anh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Ngọc Anh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

1. Chứng minh AI=2DH


Bước 1: Tính các góc và xác định độ dài đoạn thẳng.

  • Vì ABCD là hình bình hành nên AB // DC∠D+∠A=180∘. ∠D=180∘−∠A=180∘−120∘=60∘
  • DI là tia phân giác của ∠D nên: ∠CDI=∠ADI=2∠D​=260∘​=30∘
  • AB // DCDI là cát tuyến nên ∠AID=∠CDI (hai góc so le trong). ∠AID=30∘
  • Trong △ADI, ta có ∠AID=30∘ và ∠ADI=30∘. Do đó, △ADI là tam giác cân tại A. AD=AI
  • Vì ABCD là hình bình hành nên AD = BCAB = DC.
  • I là trung điểm của AB nên AI=2AB​. Từ đó suy ra: AD=AI=2AB​

Bước 2: Xét △ADH.

  • Ta có AH⊥DC (theo giả thiết), nên △ADH là tam giác vuông tại H.
  • Trong hình bình hành, ∠ADC=∠D=60∘.
  • Trong tam giác vuông ADH, ta có: cos(∠ADH)=ADDH​ cos(60∘)=ADDH​ 21​=ADDH​ AD=2DH

Bước 3: Kết luận.

  • Từ AI=AD (chứng minh ở Bước 1) và AD=2DH (chứng minh ở Bước 2), ta suy ra: AI=2DH(Điều phải chứng minh)


2. Chứng minh DI=2AH


Bước 1: Xét △ADH.

  • △ADH là tam giác vuông tại H. Ta đã biết ∠D=60∘.
  • Ta có: sin(∠ADH)=ADAH​ sin(60∘)=ADAH​ 23​​=ADAH​ AD=3​2AH​(∗)

Bước 2: Xét △ADI.

  • Trong △ADI, ta có ∠DAI=∠DAB=120∘. AD=AI và ∠ADI=30∘. ∠DAI=180∘−(∠AID+∠ADI)=180∘−(30∘+30∘)=120∘
  • Áp dụng Định lý Sin cho △ADI: sin(∠DAI)DI​=sin(∠AID)AD​ sin(120∘)DI​=sin(30∘)AD​ 23​​DI​=21​AD​ DI⋅3​2​=AD⋅2 DI=AD⋅3​(∗∗)

Bước 3: Kết luận.

  • Thay (∗) vào (∗∗), ta được: DI=(3​2AH​)⋅3 DI=2AH(Điều phải chứng minh)


3. Chứng minh AC vuông góc với AD


Bước 1: Tính độ dài các cạnh liên quan đến △ADC.

  • Ta có AI=AD và I là trung điểm AB. Suy ra AD=2AB​.
  • Vì ABCD là hình bình hành nên DC=AB. Do đó DC=2AD.

Bước 2: Xét △ADC.

  • Ta có △ADC với:
    • DC=2AD
    • ∠ADC=60∘
  • Áp dụng Định lý Cosin để tính AC2: AC2=AD2+DC2−2⋅AD⋅DC⋅cos(∠ADC) AC2=AD2+(2AD)2−2⋅AD⋅(2AD)⋅cos(60∘) AC2=AD2+4AD2−4AD2⋅21​ AC2=5AD2−2AD2 AC2=3AD2

Bước 3: Kiểm tra tính vuông góc.

  • Để AC⊥AD thì △ADC phải vuông tại A. Khi đó, theo định lý Pytago, ta cần có AD2+AC2=DC2.
  • Thay các giá trị đã tính: AD2+AC2=AD2+3AD2=4AD2
  • Và DC2=(2AD)2=4AD2.
  • Vì AD2+AC2=DC2 (4AD2=4AD2), nên △ADC là tam giác vuông tại A.
  • Do đó, AC⊥AD. (Điều phải chứng minh)

Câu trả lời là . Nguyên tắc sắp xếp các nguyên tố hóa học để dễ nhận ra tính chất của chúng được thể hiện rõ nhất trong Bảng tuần hoàn các nguyên tố hóa học (thường được gọi tắt là Bảng tuần hoàn).