Lê Song Phương
Giới thiệu về bản thân
\(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}-1=\dfrac{c}{d}-1\)
\(\Leftrightarrow\dfrac{a-b}{b}=\dfrac{c-d}{d}\)
Ta có \(\dfrac{a}{b}=\dfrac{c}{d}\)
\(\Leftrightarrow\dfrac{a}{b}+1=\dfrac{c}{d}+1\)
\(\Leftrightarrow\dfrac{a+b}{b}=\dfrac{c+d}{d}\) (đpcm)
Gọi n điểm đó là \(A_1,A_2,...,A_n\) với \(n\ge7\) và giả sử \(A_1,A_2,...,A_7\) thẳng hàng.
Với mỗi điểm \(A_k\left(8\le k\le n\right)\) bất kì, ta có 7 đường thẳng khác nhau được tạo thành là \(A_kA_i\left(i=\overline{1,7}\right)\).
Do có \(n-7\) điểm \(A_k\) khác \(A_i\left(1\le i\le7\right)\) nên số đường thẳng phân biệt được tạo thành là:
\(7\left(n-7\right)+1=7n-48\)
Theo đề bài, ta có:
\(7n-48=211\)
\(\Leftrightarrow7n=259\)
\(\Leftrightarrow n=37\) (nhận)
Vậy \(n=37\)
Gọi số có 4 chữ số thỏa mãn là \(\overline{abcd}\). Khi đó a có 4 cách chọn (từ 1 đến 4). Còn các chữ số b, c, d đều có 5 cách chọn (từ 0 đến 4). Do đó có tất cả \(4.5.5.5=500\) số thỏa mãn ycbt.
Vì \(9x-5\equiv4\left[9\right]\) nên \(y\left(y-1\right)=y^2-y\equiv4\left[9\right]\) hay \(y^2-y-4⋮9\)
\(\Leftrightarrow y^2-5y+4y-20+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)+16⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y+4\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)\left(y-5+9\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2+9\left(y-5\right)-2⋮9\)
\(\Leftrightarrow\left(y-5\right)^2-2⋮9\)
\(\Rightarrow\left(y-5\right)^2-2⋮3\) hay \(\left(y-5\right)^2\equiv2\left(mod3\right)\)
Điều này là vô lí vì số chính phương khi chia cho 3 không thể có số dư là 2.
Vậy pt đã cho không có nghiệm nguyên.
đk đã cho \(\Leftrightarrow\)\(8\left(x-2022\right)^2+y^2=25\) (1)
Vì \(\left(x-2022\right)^2\ge0;y^2\ge0\) nên (1) suy ra:
\(8\left(x-2022\right)^2\le25\)
\(\Leftrightarrow\left(x-2022\right)^2\le\dfrac{25}{8}\)
Do \(x\inℤ\) nên suy ra \(\left(x-2022\right)^2\le3\)
\(\Rightarrow x-2022\in\left\{0;\pm1;\pm2;\pm3\right\}\)
\(\Rightarrow x\in\left\{2022;2023;2021;2024;2020;2025;2019\right\}\)
Nếu \(x=2022\Rightarrow y=\pm5\)
Nếu \(x\in\left\{2021;2023\right\}\) thì \(y^2=17\), vô lý.
Nếu \(\left|x-2022\right|\ge2\) thì \(8\left(x-2022\right)^2\ge32\) \(\Leftrightarrow25-y^2\ge32\) \(\Leftrightarrow y^2\le-7\), vô lý.
Vậy có các cặp số (x; y) sau thỏa mãn:
\(\left(2022;5\right),\left(2022;-5\right)\)
Ta chia các số từ 1 đến 96 thành các cặp:
(1, 4), (2,5), (3,6), (7,10), (8,11), (9,12), ..., (91, 94), (92, 95), (93, 96)
(Do \(96⋮6\) nên ta có thể chia theo quy luật trên)
Có tất cả 48 cặp như thế. Do ta chọn 50 số khác nhau nên chắc chắn sẽ tìm được 2 số có hiệu bằng 3.
Đặt \(\left(2n+1;2n+3\right)=d\) (d lẻ)
Khi đó \(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow\left(2n+3\right)-\left(2n+1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Do d lẻ \(\Rightarrow d=1\)
\(\Rightarrow\) đpcm
Code python:
S=0
for i in range (30,71):
if i%2!=0:
S=S+i
print(S)
Ở bài này chứng minh được \(A\in\left(I\right)\) vì BC là đường kính của (I) và \(\widehat{BAC}=90^o\)