

Lê Song Phương
Giới thiệu về bản thân



































\(2x^2+3xy+y^2+5x+3y=15\)
\(\Leftrightarrow y^2+3\left(x+1\right)y+2x^2+5x-15=0\)
\(\Delta=\left[3\left(x+1\right)\right]^2-4\left(2x^2+5x-15\right)\)
\(=9x^2+18x+9-8x^2-20x+60\)
\(=x^2-2x+69=\left(x-1\right)^2+68\ge68>0\) nên pt (*) luôn có nghiệm thực.
Do đó \(y=\dfrac{-3\left(x+1\right)\pm\sqrt{x^2-2x+69}}{2}\)
Vì y là số nguyên nên \(x^2-2x+69\) là số chính phương. Đặt \(x^2-2x+69=k^2\) \(\left(k\inℕ,k\ge9\right)\)
\(\Leftrightarrow\left(x-1\right)^2+68=k^2\)
\(\Leftrightarrow\left(k-x+1\right)\left(k+x-1\right)=68\)
Ta có bảng sau:
\(k-x+1\) | 1 | 2 | 4 | 17 | 34 | 68 | -1 | -2 | -4 | -17 | -34 | -68 |
\(k+x-1\) | 68 | 34 | 17 | 4 | 2 | 1 | -68 | -34 | -17 | -4 | -2 | -1 |
\(k\) | \(\dfrac{69}{2}\) (loại) | 18 | \(\dfrac{21}{2}\) (loại) | \(\dfrac{21}{2}\) (loại) | 18 | \(\dfrac{69}{2}\)(loại) | \(-\dfrac{69}{2}\)(loại) | -18 | \(-\dfrac{21}{2}\)(loại) | \(-\dfrac{21}{2}\)(loại) | -18 | \(-\dfrac{69}{2}\)(loại) |
\(x\) | 17 | -15 | -15 | 17 | ||||||||
\(y\) | -18 hoặc -36 | 30 hoặc 12 | tương tự TH thứ 5 | tương tự TH thứ 2 |
Thử lại, ta thấy pt đã cho có các nghiệm nguyên sau:
(17; -18), (17; -36), (15; 30), (15; 12)
a) Tứ giác BDFN nội tiếp nên \(\widehat{CNA}=\widehat{BDF}\) (*)
Xét đường tròn (K), đường kính BM, ta có \(\widehat{MNB}=90^o\) hay \(MN\perp AB\) tại N (1)
Với lí do tương tự, ta có \(AD\perp EB,BC\perp EA\), do đó M là trực tâm của tam giác EAB \(\Rightarrow EM\perp AB\) (2)
Từ (1) và (2) \(\Rightarrow\) M, N, P thẳng hàng và đường thẳng này vuông góc với AB.
Từ đó suy ra tứ giác BECN nội tiếp (vì \(\widehat{ECB}=\widehat{ENB}=90^o\))
\(\Rightarrow\widehat{CNA}=\widehat{AEB}\) (**)
Từ (*) và (**), suy ra \(\widehat{BDF}=\widehat{BEA}\) \(\Rightarrow\) DF//AE (đpcm)
b) Tương tự như trên, ta có tứ giác AEDN nội tiếp \(\Rightarrow\widehat{BND}=\widehat{AEB}\), dẫn đến \(\Delta BDN~\Delta BAE\left(g.g\right)\) \(\Rightarrow\dfrac{BD}{BA}=\dfrac{BN}{BE}\Rightarrow BD.BE=BA.BN\) (3)
Tứ giác NBMD nội tiếp nên \(\widehat{ANM}=\widehat{ADB}\), dẫn đến \(\Delta AMN~\Delta ABD\left(g.g\right)\)
\(\Rightarrow\dfrac{AM}{AB}=\dfrac{AN}{AD}\Rightarrow AD.AM=AB.AN\) (4)
Cộng theo vế (3) và (4), thu được \(BD.BE+AM.AD=AB.BN+AB.AN=AB\left(BN+AN\right)=AB^2=4R^2\)không thay đổi. (đpcm)
Cách khác (xét theo mod 8): Giả sử tồn tại 2 số nguyên x, y thỏa mãn \(7x^2-24y^2=41\)
\(\Leftrightarrow7x^2-24y^2=48-7\)
\(\Leftrightarrow7\left(x^2+1\right)=24\left(y^2+2\right)\) (*)
Do \(\left(7,24\right)=1\) nên từ (*), ta có \(x^2+1⋮24\) \(\Rightarrow x^2+1⋮8\)
Từ đó x phải là số lẻ. Nhưng nếu như vậy thì \(x^2\equiv1\left[8\right]\) dẫn đến \(x^2+1\equiv2\left[8\right]\), vô lí.
Vậy điều giả sử là sai \(\Rightarrow\) pt đã cho không có nghiệm nguyên.
Theo đề bài, dễ có \(\Delta SAB=\Delta SBC=\Delta SCA\left(c.g.c\right)\)
\(\Rightarrow AB=BC=CA\)
Gọi M là trung điểm của BC. Khi đó \(\left\{{}\begin{matrix}SM\perp BC\\AM\perp BC\end{matrix}\right.\) (do các tam giác SBC và ABC lần lượt cân tại S và A). Suy ra \(BC\perp\left(SAM\right)\) \(\Rightarrow BC\perp SA\)
Hoàn toàn tương tự, ta có đpcm.
a) Gọi P là giao điểm của AM với (O). Tam giác ABH và APC có:
\(\widehat{BAH}=\widehat{PAC}\left(gt\right)\) và \(\widehat{ABH}=\widehat{APC}\) (góc nội tiếp cùng chắn cung AC)
\(\Rightarrow\Delta ABH~\Delta APC\left(g.g\right)\) \(\Rightarrow\widehat{AHB}=\widehat{ACP}\).
Mà \(\widehat{AHB}=90^o\Rightarrow\widehat{ACP}=90^o\) . Suy ra M nằm trên đường kính AP của (O).
Mặt khác, M lại là trung điểm của dây BC của (O), do đó nếu dây BC không phải là đường kính của (O) thì phải có \(AP\perp BC\) , điều này không chắc chắn đúng. Do đó để đảm bảo M là trung điểm BC thì BC phải là đường kính của (O).
\(\Rightarrow\) M là tâm của (O). Từ đó \(\widehat{MBA}=\widehat{MAB}\)
Trong tam giác HAB vuông tại H có trung tuyến HE nên \(EH=EA=EB=\dfrac{AB}{2}\), do đó \(\widehat{ABM}=\widehat{EHB}\).
Từ đó suy ra \(\widehat{MAB}=\widehat{EHB}\) \(\Rightarrow\) Tứ giác AMHE nội tiếp (đpcm)
b) Từ câu a), ta có BC là đường kính của (O) nên suy ra đpcm.
Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.
Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.
Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)
Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.
Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.
Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.
Ta có \(1+z^2=xy+yz+zx+z^2\)
\(=y\left(x+z\right)+z\left(x+z\right)\)
\(=\left(x+z\right)\left(y+z\right)\)
CMTT, \(1+x^2=\left(x+y\right)\left(x+z\right)\) và \(1+y^2=\left(x+y\right)\left(y+z\right)\)
Do đó \(\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}\) \(=\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\right)\left(x+z\right)}}\)
\(=\sqrt{\left(y+z\right)^2}\) \(=\left|y+z\right|\)
Tương tự như thế, ta được
\(A=x\left|y+z\right|+y\left|z+x\right|+z\left|x+y\right|\)
Cái này không tính ra số cụ thể được nhé bạn. Nó còn phải tùy vào dấu của \(x+y,y+z,z+x\) nữa.
a) Do AB là tiếp tuyến của (O) tại B nên \(\widehat{ABO}=90^o\). CMTT, ta có \(\widehat{ACO}=90^o\) \(\Rightarrow\widehat{ABO}+\widehat{ACO}=180^o\) \(\Rightarrow\) Tứ giác ABOC nội tiếp (đpcm).
b) Theo tính chất 2 tiếp tuyến cắt nhau, ta có \(AO\perp BC\). Tam giác ABO vuông tại B, có đường cao BH nên \(AB^2=AH.AO\)
Mặt khác, lại có \(\widehat{ABD}=\widehat{ACB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung đó) nên \(\Delta ABD~\Delta AEB\left(g.g\right)\) \(\Rightarrow\dfrac{AB}{AE}=\dfrac{AD}{AB}\) \(\Rightarrow AB^2=AD.AE\)
Từ đó dễ dàng suy ra \(AD.AE=AH.AO\)
c) Do tính chất của 2 tiếp tuyến cắt nhau nên \(\left\{{}\begin{matrix}MD=MB\\ND=NC\end{matrix}\right.\)
Do đó \(C_{AMN}=AM+AN+MN\)
\(=AM+AN+\left(MD+ND\right)\)
\(=\left(AM+MD\right)+\left(AN+ND\right)\)
\(=\left(AM+MB\right)+\left(AN+NC\right)\)
\(=AB+AC\)
\(=2AB\)
Lại có \(AB=\sqrt{AO^2-R^2}=\sqrt{6^2-3,6^2}=4,8cm\)
\(\Rightarrow C_{AMN}=2AB=2.4,8=9,6cm\)
Xét \(n>3\), khi đó \(n⋮̸3\), dẫn đến \(n^{2024}\) chia 3 dư 1 (số chính phương khi chia cho 3 chỉ có thể dư 0 hoặc 1 nhưng do n không chia hết cho 3 nên chỉ có thể suy ra \(n^{2024}\) chia 3 dư 1)
Suy ra \(n^{2024}+1\) chia 3 dư 2. Do đó nó không thể là số chính phương.
Xét \(n=2\), khi đó \(2^{2024}+1=\left(2^{1012}\right)^2+1>\left(2^{1012}\right)^2\)
Đồng thời \(\left(2^{1012}\right)^2+1< \left(2^{1012}\right)^2+2.2^{1012}+1=\left(2^{1012}+1\right)^2\)
Do đó \(\left(2^{1012}\right)^2< 2^{2024}+1< \left(2^{1012}+1\right)^2\), hay \(2^{2024}+1\) không thể là số chính phương.
Xét \(n=3\), khi đó \(3^{2024}+1=\left(3^{1012}\right)^2+1>\left(3^{1012}\right)^2\)
Và \(\left(3^{1012}\right)^2+1< \left(3^{1012}\right)^2+2.3^{1012}+1=\left(3^{1012}+1\right)^2\)
Do đó \(\left(3^{1012}\right)^2< 3^{2024}+1< \left(3^{1012}+1\right)^2\), hay \(3^{2024}+1\) không thể là số chính phương.
Vậy, với mọi số nguyên tố \(n\) thì \(n^{2024}+1\) không thể là số chính phương.
Bài này áp dụng BĐT B.C.S là ra nhé
Ta có \(VT=\dfrac{a^2}{b}+\dfrac{b^2}{c}+\dfrac{c^2}{a}\ge\dfrac{\left(a+b+c\right)^2}{b+c+a}=a+b+c=VP\)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{a}\Leftrightarrow a=b=c\)
(*) BĐT B.C.S phát biểu như sau:
Cho \(2n\) số thực \(a_1,a_2,...,a_n,x_1,x_2,...,x_n\), trong đó \(a_i>0,\forall i\in\left\{1,2,...,n\right\}\). Khi đó ta có:
\(\dfrac{x_1^2}{a_1}+\dfrac{x_2^2}{a_2}+...+\dfrac{x_n^2}{a_n}\ge\dfrac{\left(x_1+x_2+...+x_n\right)^2}{a_1+a_2+...+a_n}\) (*)
Dấu "=" xảy ra \(\Leftrightarrow\dfrac{x_1}{a_1}=\dfrac{x_2}{a_2}=...=\dfrac{x_n}{a_n}\)
Trước tiên, ta chứng minh (*) đúng với \(n=2\). Thật vậy:
Với \(x,y\inℝ;a,b>0\), thì ta cần chứng minh
\(\dfrac{x^2}{a}+\dfrac{y^2}{b}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow\dfrac{bx^2+ay^2}{ab}\ge\dfrac{\left(x+y\right)^2}{a+b}\)
\(\Leftrightarrow\left(a+b\right)\left(bx^2+ay^2\right)\ge ab\left(x+y\right)^2\)
\(\Leftrightarrow abx^2+a^2y^2+b^2x^2+aby^2\ge abx^2+aby^2+2abxy\)
\(\Leftrightarrow a^2y^2-2abxy+b^2x^2\ge0\)
\(\Leftrightarrow\left(ay-bx\right)^2\ge0\) (luôn đúng)
Vậy ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow ay=bx\Leftrightarrow\dfrac{x}{a}=\dfrac{y}{b}\)
Để chứng minh với \(n\ge3\) thì bạn chỉ cần dùng nhiều lần BĐT cho 2 phân thức là được.
VD: \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y\right)^2}{a+b}+\dfrac{z^2}{c}\ge\dfrac{\left(x+y+z\right)^2}{a+b+c}\)
Vậy BĐT được chứng minh.