⚚TᕼIêᑎ_ᒪý⁀ᶜᵘᵗᵉ
Giới thiệu về bản thân
\(\dfrac{7}{3}-\dfrac{5}{6}=\dfrac{14}{6}-\dfrac{5}{6}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(0,125+y.2=18,5\)
⇔ \(y.2=18,375\)
⇔ \(y=9,1875\)
\(\dfrac{2}{5}+x:\dfrac{7}{3}=\dfrac{3}{2}\)
⇔ \(x:\dfrac{7}{3}=\dfrac{11}{10}\)
⇔ \(x=\dfrac{77}{30}\)
\(\dfrac{9}{4}.\dfrac{7}{3}=\dfrac{21}{4}\)
\(\dfrac{36}{21}-\dfrac{15}{20}=\dfrac{12}{7}-\dfrac{3}{4}=\dfrac{27}{28}\)
\(\dfrac{63}{45}-\dfrac{20}{25}=\dfrac{7}{5}-\dfrac{4}{5}=\dfrac{3}{5}\)
Ta có :
\(\Delta=b^2-4.a.c\)
\(\Delta=[-\left(5-m\right)]^2-4.1.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-4.\left(4m+4\right)\)
\(\Delta=25-10m+m^2-16m-16\)
\(\Delta=m^2-26m+9\)
\(\Delta=\left(m-13\right)^2-160\) > 0 \(\forall m\) \(\in R\)
Theo ht vi - ét , ta có :
\(x_1+x_2=\) \(5+m\)
\(x_1.x_2=4m+4\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{7}{12}\)
⇔ \(x_1+x_2=\dfrac{7}{12}\)
⇔ \(5+m=\dfrac{7}{12}\)
⇔ \(m=-\dfrac{53}{12}\)
Vậy m = \(-\dfrac{53}{12}\)
( không chắc đáp án đâu nhé )
\(2x-\dfrac{3}{5}=\dfrac{2}{3}\)
⇔ \(2x=\dfrac{2}{3}+\dfrac{3}{5}\)
⇔ \(2x=\dfrac{19}{15}\)
⇔ \(x=\dfrac{19}{15}:2\)
⇔ \(x=\dfrac{19}{30}\)
Vậy \(x=\dfrac{19}{30}\)
\(\dfrac{117}{234}=\dfrac{1}{2}\)
\(\dfrac{90}{126}=\dfrac{5}{7}\)
\(\dfrac{162162}{345345}=\dfrac{54}{115}\)