Bùi Thị Trang

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Bùi Thị Trang
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

1) Có \(a^{2} - a b + b^{2} = \frac{1}{4} \left(\right. 4 a^{2} - 4 a b + 4 b^{2} \left.\right) = \frac{1}{4} \left(\right. 2 a - b \left.\right)^{2} + \frac{3}{4} b^{2} \geq 0\).

Đẳng thức xảy ra khi và chỉ khi \(\left{\right. & b = 0 \\ & 2 a - b = 0\) 

hay \(a = b = 0\).

2) Có \(a^{2} - a b + b^{2} = \frac{1}{4} \left(\right. 4 a^{2} - 4 a b + 4 b^{2} \left.\right)\)

\(= \frac{1}{4} \left(\right. a + b \left.\right)^{2} + \frac{3}{4} \left(\right. a - b \left.\right)^{2} \geq \frac{1}{4} \left(\right. a + b \left.\right)^{2}\)

Đẳng thức xảy ra khi và chỉ khi \(a = b\).





⚡Nếu \(x < 1\) thì \(x^{8} - x^{7} + x^{2} - x + 1\)

\(= x^{8} + x^{2} \left(\right. 1 - x^{5} \left.\right) + \left(\right. 1 - x \left.\right) > 0\).

⚡Nếu \(x \geq 1\) thì \(x^{8} - x^{7} + x^{2} - x + 1\)

\(= x^{7} \left(\right. x - 1 \left.\right) + x \left(\right. x - 1 \left.\right) + 1 > 0\).



Từ giả thiết \(z \geq y \geq x \geq 0\) suy ra \(x \left(\right. x - y \left.\right) \left(\right. x - z \left.\right) \geq 0\) (1).

Hai số hạng còn lại của vế trái bất đẳng thức cần chứng minh có nhân tử chung \(z - y \geq 0\) (2) 

và ta có \(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) = \left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right.\) (3)

Mà \(z \geq y \geq x \geq 0\) nên \(z \geq y \geq 0\) và \(z - x \geq y - x \geq 0\), từ đó  

\(z \left(\right. z - x \left.\right) \geq y \left(\right. y - x \left.\right)\) nên \(z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \geq 0\) (4)

Từ (2) và (4) suy ra  \(\left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right. \geq 0\), kết hợp với (3) suy ra 

\(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) \geq 0\) (5).

Từ (1) và (5) suy ra điều phải chứng minh.


uy ra bốn điểm \(A\), \(B\), \(C\), \(D\) cùng nằm trên một đường tròn tâm \(O\), đường kính \(A C\).