

Bùi Thị Trang
Giới thiệu về bản thân



































1) Có \(a^{2} - a b + b^{2} = \frac{1}{4} \left(\right. 4 a^{2} - 4 a b + 4 b^{2} \left.\right) = \frac{1}{4} \left(\right. 2 a - b \left.\right)^{2} + \frac{3}{4} b^{2} \geq 0\).
Đẳng thức xảy ra khi và chỉ khi \(\left{\right. & b = 0 \\ & 2 a - b = 0\)
hay \(a = b = 0\).
2) Có \(a^{2} - a b + b^{2} = \frac{1}{4} \left(\right. 4 a^{2} - 4 a b + 4 b^{2} \left.\right)\)
\(= \frac{1}{4} \left(\right. a + b \left.\right)^{2} + \frac{3}{4} \left(\right. a - b \left.\right)^{2} \geq \frac{1}{4} \left(\right. a + b \left.\right)^{2}\)
Đẳng thức xảy ra khi và chỉ khi \(a = b\).
⚡Nếu \(x < 1\) thì \(x^{8} - x^{7} + x^{2} - x + 1\)
\(= x^{8} + x^{2} \left(\right. 1 - x^{5} \left.\right) + \left(\right. 1 - x \left.\right) > 0\).
⚡Nếu \(x \geq 1\) thì \(x^{8} - x^{7} + x^{2} - x + 1\)
\(= x^{7} \left(\right. x - 1 \left.\right) + x \left(\right. x - 1 \left.\right) + 1 > 0\).
hdhudsgduhj jassajashis
Từ giả thiết \(z \geq y \geq x \geq 0\) suy ra \(x \left(\right. x - y \left.\right) \left(\right. x - z \left.\right) \geq 0\) (1).
Hai số hạng còn lại của vế trái bất đẳng thức cần chứng minh có nhân tử chung \(z - y \geq 0\) (2)
và ta có \(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) = \left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right.\) (3)
Mà \(z \geq y \geq x \geq 0\) nên \(z \geq y \geq 0\) và \(z - x \geq y - x \geq 0\), từ đó
\(z \left(\right. z - x \left.\right) \geq y \left(\right. y - x \left.\right)\) nên \(z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \geq 0\) (4)
Từ (2) và (4) suy ra \(\left(\right. z - y \left.\right) \left[\right. z \left(\right. z - x \left.\right) - y \left(\right. y - x \left.\right) \left]\right. \geq 0\), kết hợp với (3) suy ra
\(y \left(\right. y - z \left.\right) \left(\right. y - x \left.\right) + z \left(\right. z - x \left.\right) \left(\right. z - y \left.\right) \geq 0\) (5).
Từ (1) và (5) suy ra điều phải chứng minh.
uy ra bốn điểm \(A\), \(B\), \(C\), \(D\) cùng nằm trên một đường tròn tâm \(O\), đường kính \(A C\).