boi đz
Giới thiệu về bản thân
\(A=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+....+\dfrac{1}{99\cdot100}\)
\(A=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(A=1+\left(-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}\right)-\dfrac{1}{100}\)
\(A=1+0-\dfrac{1}{100}\)
\(A=1-\dfrac{1}{100}< 1\)
\(\Rightarrow A< 1\)
\(\dfrac{3}{1\times4}+\dfrac{3}{4\times7}+...+\dfrac{3}{226\times229}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+....+\dfrac{1}{226}-\dfrac{1}{229}\)
\(=1+\left(-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+....+\dfrac{1}{226}\right)-\dfrac{1}{229}\)
\(=1+0-\dfrac{1}{229}\)
\(=1-\dfrac{1}{229}\)
\(=\dfrac{229}{229}-\dfrac{1}{229}\)
\(=\dfrac{229-1}{229}\)
\(=\dfrac{228}{229}\)
\(5x+5^0=3x+3^2\\ 5x+1=3x+9\\ 5x-3x=9-1\\ x\left(5-3\right)=8\\ x2=8\\ x=8\div2\\ x=4\)
\(\left(5-x\right)^{2020}=\left(5-x\right)^{2022}\\ \left(5-x\right)^{2020}-\left(5-x\right)^{2022}=0\\ \left(5-x\right)^{2020}-\left(5-x\right)^{2020}\cdot\left(5-x\right)^2=0\\ \left(5-x\right)^{2020}\cdot\left(1-\left(5-x\right)^2\right)=0\)
\(\Rightarrow Th1:\left(5-x\right)^{2020}=0\\ 5-x=0\\ x=5-0\\ x=5\) \(\Rightarrow Th2:1-\left(5-x\right)^2=0\\ \left(5-x\right)^2=1-0\\\left(5-x\right)^2=1\\ 5-x=1\\ x=5-1\\ x=4 \)
Vậy \(x\in\left\{5;4\right\}\)
\(A=\dfrac{4}{3}+\dfrac{10}{9}+\dfrac{28}{27}+....+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)
\(A=\dfrac{4}{3}+\dfrac{10}{3^2}+\dfrac{28}{3^3}+...+\dfrac{\left(3^{99}+1\right)}{3^{99}}\)
\(A=\left(1+\dfrac{1}{3}\right)+\left(1+\dfrac{1}{3^2}\right)+\left(1+\dfrac{1}{3^3}\right)+...+\left(1+\dfrac{1}{3^{99}}\right)\)
\(A=\left(1+1+....+1\right)+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)\)
\(A=99+\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
Gọi \(\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)là T
\(T=\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(3T=1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\)
\(3T-T=\left(1+\dfrac{1}{3}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{98}}\right)-\left(\dfrac{1}{3}+\dfrac{1}{3^2}+\dfrac{1}{3^3}+...+\dfrac{1}{3^{99}}\right)\)
\(2T=1-\dfrac{1}{3^{99}}\)
\(T=\left(1-\dfrac{1}{3^{99}}\right):2\)
\(T=\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}\)
\(=>A=99+T=99+\dfrac{1}{2}-\dfrac{1}{3^{99}\cdot2}=99,5-\dfrac{1}{3^{99}\cdot2}< 100\)
Vậy A < 100
1)\(\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+...+\dfrac{1}{x\left(x+3\right)}=\dfrac{11}{70}\)
\(\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+...+\dfrac{3}{x\left(x+3\right)}\right):3=\dfrac{11}{70}\)
\(\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+.....+\dfrac{1}{x}-\dfrac{1}{x+3}\right)=\dfrac{11}{70}\cdot3\)
\(\dfrac{1}{2}-\dfrac{1}{x+3}=\dfrac{33}{70}\)
\(\dfrac{1}{x+3}=\dfrac{1}{2}-\dfrac{33}{70}\)
\(\dfrac{1}{x+3}=\dfrac{2}{70}\)
\(\dfrac{1}{x+3}=\dfrac{1}{35}\)
\(x+3=35\\ x=35-3\\ x=32\)
2) Số góc đc tạo thành từ 2023 tia chung gốc là:\(\dfrac{2023\cdot2022}{2}=2045253\) (góc)
\(\dfrac{3}{1\cdot4}+\dfrac{4}{4\cdot8}+\dfrac{5}{8\cdot13}+..........+\dfrac{10}{43\cdot53}\)
\(=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{13}+....................+\dfrac{1}{43}-\dfrac{1}{53}\)
\(=1-\dfrac{1}{53}\)
\(=\dfrac{52}{53}\)
C
Số số hạng: ( 2020 - 1) : 1 + 1 = 2020 (số)
Tổng: (2020 +1)*2020 : 2 = 2041210
(3n−1)⋮n−1
=>(3n−1)−3⋅(n−1)⋮n−1
Ư(2) = {-1;1;-2;2}
Th1
n-1=-1
=> n=0
Th2
n-1=1
=> n=2
Th3
n-1=-2
=> n=-1
Th4
n-1=2
=> n= 3
Vậy n ϵ {3;-1;2;0}
Mình làm lại lúc nãy mình hơi lag