

Nguyễn Thiên Phúc
Giới thiệu về bản thân



































a) ĐKXĐ: x\(\neq\)0, 9, 4
A=\(\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x-4}{x-5\sqrt{x}+6}\right)\):\(\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
A=\(\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}+\dfrac{x-9}{x-5\sqrt{x}+6}-\dfrac{x-4}{x-5\sqrt{x}+6}\right)\):\(\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
A=\(\dfrac{\left(\sqrt{x}+2\right)+\left(x-9\right)-\left(x-4\right)}{x-5\sqrt{x}+6}\bullet\dfrac{\sqrt{x}+1}{\left(2\sqrt{x}+2\right)-\sqrt{x}}\)
A=\(\dfrac{\sqrt{x}+2+x-9-x+4}{x-5\sqrt{x}+6}\bullet\dfrac{\sqrt{x}+1}{2\sqrt{x}+2-\sqrt{x}}\)
A=\(\dfrac{\sqrt{x}+\left(2-5\right)+\left(-x+x\right)}{x-5\sqrt{x}+6}\bullet\dfrac{\sqrt{x}+1}{\left(2\sqrt{x}-\sqrt{x}\right)+2}\)
A=\(\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\bullet\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
A=\(\dfrac{\sqrt{x}+1}{x-4}\)
b) ĐKXĐ: x\(\neq\)0, 9, 4
\(\dfrac{1}{A}\le\dfrac{-5}{2}\)
\(\dfrac{1}{\dfrac{\sqrt{x}+1}{x-4}}\le\dfrac{-5}{2}\)
\(\dfrac{x-4}{\sqrt{x}+1}\le\dfrac{-5}{2}\)
2x-8\(\le-5\sqrt{x}\)-5
2x+5\(\sqrt{x}\le\)3
0\(\le\)x\(\le\dfrac{1}{4}\)
Vậy 0\(\le\)x\(\le\dfrac{1}{4}\) để \(\dfrac{1}{A}\le\dfrac{-5}{2}\)
a) ĐKXĐ: x\(\neq\)0, 9, 4
A=\(\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}+\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{x-4}{x-5\sqrt{x}+6}\right)\):\(\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
A=\(\left(\dfrac{\sqrt{x}+2}{x-5\sqrt{x}+6}+\dfrac{x-9}{x-5\sqrt{x}+6}-\dfrac{x-4}{x-5\sqrt{x}+6}\right)\):\(\left(\dfrac{2\sqrt{x}+2}{\sqrt{x}+1}-\dfrac{\sqrt{x}}{\sqrt{x}+1}\right)\)
A=\(\dfrac{\left(\sqrt{x}+2\right)+\left(x-9\right)-\left(x-4\right)}{x-5\sqrt{x}+6}\bullet\dfrac{\sqrt{x}+1}{\left(2\sqrt{x}+2\right)-\sqrt{x}}\)
A=\(\dfrac{\sqrt{x}+2+x-9-x+4}{x-5\sqrt{x}+6}\bullet\dfrac{\sqrt{x}+1}{2\sqrt{x}+2-\sqrt{x}}\)
A=\(\dfrac{\sqrt{x}+\left(2-5\right)+\left(-x+x\right)}{x-5\sqrt{x}+6}\bullet\dfrac{\sqrt{x}+1}{\left(2\sqrt{x}-\sqrt{x}\right)+2}\)
A=\(\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\bullet\dfrac{\sqrt{x}+1}{\sqrt{x}+2}\)
A=\(\dfrac{\sqrt{x}+1}{x-4}\)
b) ĐKXĐ: x\(\neq\)0, 9, 4
\(\dfrac{1}{A}\le\dfrac{-5}{2}\)
\(\dfrac{1}{\dfrac{\sqrt{x}+1}{x-4}}\le\dfrac{-5}{2}\)
\(\dfrac{x-4}{\sqrt{x}+1}\le\dfrac{-5}{2}\)
2x-8\(\le-5\sqrt{x}\)-5
2x+5\(\sqrt{x}\le\)3
0\(\le\)x\(\le\dfrac{1}{4}\)
Vậy 0\(\le\)x\(\le\dfrac{1}{4}\) để \(\dfrac{1}{A}\le\dfrac{-5}{2}\)
a) ĐKXĐ: 0<x\(\ne\)1
P=\(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)+\(\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-2\sqrt{x}}\)+\(\dfrac{x+2}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{\left(2\sqrt{x}-2\right)+\left(x+2\right)}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+2x}{x\sqrt{x}+x-2\sqrt{x}}\)+\(\dfrac{2\sqrt{x}-2+x+2}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{\left(x\sqrt{x}+2x\right)+\left[2\sqrt{x}+\left(-2+2\right)+x\right]}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+2x+2\sqrt{x}+x}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+\left(2x+x\right)+2\sqrt{x}}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+3x+2\sqrt{x}}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{\sqrt{x}\left[\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\right]}{\sqrt{x}\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\right]}\)
P=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) ĐKXĐ: 0<x\(\ne\)1
x=3+2\(\sqrt{2}\)
x=(\(\sqrt{2}\))2+2\(\bullet\sqrt{2}\bullet\)1+1
x=(\(\sqrt{2}\)+1)2
Thay x=3+2\(\sqrt{2}\)(TM)vào P:
P=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+1}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
P=\(\dfrac{\left|\sqrt{2}+1\right|+1}{\left|\sqrt{2}+1\right|-1}\)
P=\(\dfrac{\sqrt{2}+1+1}{\sqrt{2}+1-1}\)
P=1+\(\sqrt{2}\)
Vậy P=1+\(\sqrt{2}\) khi x=3+2\(\sqrt{2}\)
a) ĐKXĐ: 0<x\(\ne\)1
P=\(\dfrac{x}{\sqrt{x}\left(\sqrt{x}-1\right)}\)+\(\dfrac{2\sqrt{x}-2}{x\sqrt{x}+x-2\sqrt{x}}\)+\(\dfrac{x+2}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)+\(\dfrac{\left(2\sqrt{x}-2\right)+\left(x+2\right)}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+2x}{x\sqrt{x}+x-2\sqrt{x}}\)+\(\dfrac{2\sqrt{x}-2+x+2}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{\left(x\sqrt{x}+2x\right)+\left[2\sqrt{x}+\left(-2+2\right)+x\right]}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+2x+2\sqrt{x}+x}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+\left(2x+x\right)+2\sqrt{x}}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{x\sqrt{x}+3x+2\sqrt{x}}{x\sqrt{x}+x-2\sqrt{x}}\)
P=\(\dfrac{\sqrt{x}\left[\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)\right]}{\sqrt{x}\left[\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\right]}\)
P=\(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b) ĐKXĐ: 0<x\(\ne\)1
x=3+2\(\sqrt{2}\)
x=(\(\sqrt{2}\))2+2\(\bullet\sqrt{2}\bullet\)1+1
x=(\(\sqrt{2}\)+1)2
Thay x=3+2\(\sqrt{2}\)(TM)vào P:
P=\(\dfrac{\sqrt{\left(\sqrt{2}+1\right)^2}+1}{\sqrt{\left(\sqrt{2}+1\right)^2}-1}\)
P=\(\dfrac{\left|\sqrt{2}+1\right|+1}{\left|\sqrt{2}+1\right|-1}\)
P=\(\dfrac{\sqrt{2}+1+1}{\sqrt{2}+1-1}\)
P=1+\(\sqrt{2}\)
Vậy P=1+\(\sqrt{2}\) khi x=3+2\(\sqrt{2}\)
A=2(4\(\sqrt{5}\)-7\(\sqrt{5}\)+6\(\sqrt{5}\))
A= 6\(\sqrt{5}\)
A=2(4\(\sqrt{5}\)-7\(\sqrt{5}\)+6\(\sqrt{5}\))
A= 6\(\sqrt{5}\)
Có
ACD vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan =
=
33
Có CD
phương BC(GT)
Nên =90
+
=
=
-
90
- 33
57
Có
BCA vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan 57
tan 5730
AB
46 AB(m)
Có
ACD vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan =
=
33
Có CD
phương BC(GT)
Nên =90
+
=
=
-
90
- 33
57
Có
BCA vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan 57
tan 5730
AB
46 AB(m)
Có
ACD vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan =
=
33
Có CD
phương BC(GT)
Nên =90
+
=
=
-
90
- 33
57
Có
BCA vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan 57
tan 5720
AB
31 AB(m)
Có
ACD vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan =
=
33
Có CD
phương BC(GT)
Nên =90
+
=
=
-
90
- 33
57
Có
BCA vuông tại A(AC
BA)
Nên tan =
(TSLG của góc nhọn)
tan 57
tan 5720
AB
31 AB(m)