Nguyễn Minh Kiên

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Minh Kiên
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Vi \(\hat{x O N}\) và \(\hat{x^{'} O N}\) kề bù nên \(\hat{x O N} + \hat{x^{'} O N} = 18 0^{\circ}\).

Mà \(\hat{x O N} = 9 0^{\circ}\) nên \(\hat{x^{'} O N} = 9 0^{\circ}\).

Vì tia \(O P\) là tia phân giác của góc \(\hat{x^{'} O N}\) nên \(\hat{x^{'} O P} = \hat{P O N} = \frac{1}{2} \hat{x^{'} O N} = 4 5^{\circ}\).

Mặt khác hai tia \(O P\) và \(O M\) thuộc hai nửa mặt phẳng đối nhau bờ \(x x^{'}\) nên \(\hat{M O P} = \hat{P O N} + \hat{x O N} + \hat{x O M} = 4 5^{\circ} + 9 0^{\circ} + 4 5^{\circ} = 18 0^{\circ}\).

Suy ra hai tia \(O P\) và \(O M\) là hai tia đối nhau. Mà \(O x\) và \(O x^{'}\) là hai tia đối nhau.

Suy ra \(\hat{x O M}\) và \(\hat{x^{'} O P}\) là hai góc đối đỉnh.

Vi \(O\) nằm trên đường thẳng \(x x^{'}\) nên hai tia \(O x\) và \(O x^{'}\) là hai tia đối nhau. (1)

Do \(O N\) và \(O M\) thuộc hai nửa mặt phẳng đối nhau bờ \(O x\) nên tia \(O x\) nằm giữa \(O N\) và \(O M\).

Suy ra \(\hat{x O M} + \hat{x O N} = 14 0^{\circ} + 4 0^{\circ} = 18 0^{\circ}\).

Vậy \(\hat{x O M}\) và \(\hat{x O N}\) là hai góc kề bù.

Suy ra hai tia \(O M\) và \(O N\) đối nhau. (2)

Từ (1) và (2), suy ra \(\hat{x O N}\) và \(\hat{x^{'} O M}\) là hai góc đối đỉnh.

Vì \(\hat{A O D}\) và \(\hat{B O C}\) đối đỉnh nên \(\hat{A O D} = \hat{B O C}\).

Mà \(\hat{A O D} + \hat{B O C} = 10 0^{\circ}\) nên \(\hat{A O D} = \hat{B O C} = 10 0^{\circ} : 2 = 5 0^{\circ}\).

Lại có \(\hat{B O D}\) và \(\hat{B O C}\) kề bù nên \(\hat{B O D} + \hat{B O C} = 18 0^{\circ}\).

Suy ra \(\hat{B O D} = 18 0^{\circ} - \hat{B O C} = 18 0^{\circ} - 5 0^{\circ} = 13 0^{\circ}\).

Suy ra \(\hat{A O C} = \hat{B O D} = 13 0^{\circ}\) (hai góc đối đinh).

Vì \(\hat{A O D}\) và \(\hat{B O C}\) đối đỉnh nên \(\hat{A O D} = \hat{B O C}\).

Mà \(\hat{A O D} + \hat{B O C} = 10 0^{\circ}\) nên \(\hat{A O D} = \hat{B O C} = 10 0^{\circ} : 2 = 5 0^{\circ}\).

Lại có \(\hat{B O D}\) và \(\hat{B O C}\) kề bù nên \(\hat{B O D} + \hat{B O C} = 18 0^{\circ}\).

Suy ra \(\hat{B O D} = 18 0^{\circ} - \hat{B O C} = 18 0^{\circ} - 5 0^{\circ} = 13 0^{\circ}\).

Suy ra \(\hat{A O C} = \hat{B O D} = 13 0^{\circ}\) (hai góc đối đinh).

loading...

a) \(A C\) và \(A D\) là hai tia phân giác của hai góc kề bù, nên: \(A C \bot A D\).

\(B C\) và \(B D\) là hai tia phân giác của hai góc kề bù, nên: \(B C \bot B D\).

b) Vì \(x y\) // \(m n \Rightarrow \hat{y A B} = \hat{A B m}\) (hai góc so le trong).

Vậy \(\hat{A_{3}} = \hat{B_{2}}\) (cùng bằng \(\frac{1}{2} \hat{y A B}\) và \(\frac{1}{2} \hat{A B m}\)).

Suy ra: \(A D / / B C\).

\(x y\) // \(m n \Rightarrow \hat{x A B} = \hat{A B n}\) (hai góc so le trong).

Vậy \(\hat{A_{2}} = \hat{B_{3}}\) (cùng bằng \(\frac{1}{2} \hat{x A B}\) và \(\frac{1}{2} \hat{A B n}\)).

Suy ra: \(A C / / B D\).

c) \(A D\) // \(B D\) (theo chứng minh b), \(B D \bot B C\) (theo chứng minh a).

Vậy \(A D \bot B D\) (\(B D\) vuông góc với một trong hai đường song song thì vuông góc với đường còn lại).

Suy ra: \(\hat{A D B} = 9 0^{\circ}\).

Tương tự: \(A D\) // \(B C\) (theo chứng minh b); \(A D \bot A C\) (theo chứng minh a).

Vậy \(A C \bot B C\) (như trên).

Suy ra: \(\hat{A C B} = 9 0^{\circ}\).

loading...

a) \(A C\) và \(A D\) là hai tia phân giác của hai góc kề bù, nên: \(A C \bot A D\).

\(B C\) và \(B D\) là hai tia phân giác của hai góc kề bù, nên: \(B C \bot B D\).

b) Vì \(x y\) // \(m n \Rightarrow \hat{y A B} = \hat{A B m}\) (hai góc so le trong).

Vậy \(\hat{A_{3}} = \hat{B_{2}}\) (cùng bằng \(\frac{1}{2} \hat{y A B}\) và \(\frac{1}{2} \hat{A B m}\)).

Suy ra: \(A D / / B C\).

\(x y\) // \(m n \Rightarrow \hat{x A B} = \hat{A B n}\) (hai góc so le trong).

Vậy \(\hat{A_{2}} = \hat{B_{3}}\) (cùng bằng \(\frac{1}{2} \hat{x A B}\) và \(\frac{1}{2} \hat{A B n}\)).

Suy ra: \(A C / / B D\).

c) \(A D\) // \(B D\) (theo chứng minh b), \(B D \bot B C\) (theo chứng minh a).

Vậy \(A D \bot B D\) (\(B D\) vuông góc với một trong hai đường song song thì vuông góc với đường còn lại).

Suy ra: \(\hat{A D B} = 9 0^{\circ}\).

Tương tự: \(A D\) // \(B C\) (theo chứng minh b); \(A D \bot A C\) (theo chứng minh a).

Vậy \(A C \bot B C\) (như trên).

Suy ra: \(\hat{A C B} = 9 0^{\circ}\).

loading...

Theo đề bài:

\(\hat{O_{1}} = \hat{O_{2}}\) (\(O E\) là tia phân giác của \(\hat{A O C} \left.\right) .\) (1)

\(\hat{O_{3}} = \hat{O_{4}}\) (\(O F\) là tia phân giác của \(\hat{D O B} \left.\right)\). (2)

Mà \(\hat{A O D} = \hat{C O B}\) (hai góc đối đỉnh).

Từ (1), (2), (3), ta có: \(\hat{O_{1}} + \hat{O_{3}} + \hat{A O D} = \hat{O_{2}} + \hat{O_{4}} + \hat{C O B}\) (4)

Mà \(\left(\right. \hat{O_{1}} + \hat{O_{3}} + \hat{A O D} \left.\right) + \left(\right. \hat{O_{2}} + \hat{O_{4}} + \hat{C O B} \left.\right) = 36 0^{\circ}\). (5)

Do đó \(\hat{O_{1}} + \hat{O_{3}} + \hat{A O D} = 18 0^{\circ}\).

Từ \(\left(\right. 4 \left.\right)\) và \(\left(\right. 5 \left.\right) \Rightarrow \hat{E O F} = 18 0^{\circ}\).

Vậy \(E , O , F\) nằm trên một đường thẳng, hay tia \(O E\) và tia \(O F\) là hai tia đối nhau.

loading...

a) \(x y\) // \(x^{'} y^{'}\) nên \(\hat{x A B} = \hat{A B y^{'}}\) (hai góc so le trong). (1)

\(\left(A A\right)^{'}\) là tia phân giác của \(\hat{x A B}\) nên: \(\hat{A_{1}} = \hat{A_{2}} = \frac{1}{2} \hat{x A B}\) (2)

\(\left(B B\right)^{'}\) là tia phân giác của \(\hat{\left(A B y\right)^{'}}\) nên: \(\hat{B_{1}} = \hat{B_{2}} = \frac{1}{2} \hat{A B y^{'}}\) (3)

Từ (1), (2), (3) ta có: \(\hat{A_{2}} = \hat{B_{1}}\).

Mà hai góc ở vị trí so le trong, nên \(\left(A A\right)^{'} / / \left(B B\right)^{'}\)

b) \(x y\) // \(x^{'} y^{'}\) nên \(\hat{A_{1}} = \hat{\left(A A\right)^{'} B}\) (hai góc so le trong).

\(\left(A A\right)^{'} / / \left(B B\right)^{'}\) nên \(\hat{A_{1}} = \hat{\left(A B\right)^{'} B}\) (hai góc đồng vị).

Vậy \(\hat{\left(A A\right)^{'} B} = \hat{\left(A B\right)^{'} B}\).

Định lí: "Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau"

   

GT   

     a và b phân biệt   

     a // c     

     b // c

   

KL   

     a // b

Định lí: "Hai đường thẳng phân biệt cùng song song với một đường thẳng thứ ba thì chúng song song với nhau"

   

GT   

     a và b phân biệt   

     a // c     

     b // c

   

KL   

     a // b