Nguyễn Hồng Nhung

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Hồng Nhung
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Xét tam giác ABE và tam giác ACF
Góc AEB = Góc AFC = 90 độ
Cạnh huyền AB=AC (theo giả thiết)
Góc A chung
Do đó: Tam giác ABE = Tam giác ACF (Cạnh huyền - góc nhọn )
Suy ra: AE=AF (2 cạnh tương ứng)
Xét tam giác AFH và tam giác AEH có:
Góc AFH= góc AEH = 90 độ
Cạnh huyền AH chung
AF=AE ( Chứng minh trên)
Do đó: tam giác AFH = tam giác AEH ( cạnh huyền cạnh góc vuông)
Suy ra góc FAH= góc EAH ( 2 góc tương ứng)
Hay GÓC BAH= GÓC CAH
Xét tam giác ABH và tam giác ACH có:
AB=AC( theo gt)
Góc BAH = Góc CAH ( chứng minh trên)
Cạnh AH chung
Do đó: tam giác ABH = tam giác ACH (c.g.c) 
Vậy tam giác ABH = tam giác ACH (đpcm)
b) Vì tam giác ABC có AB=AC nên tam giác ABC là tam giác cân tại A, do đó suy ra góc B= góc C
Do Tam giác ABE = Tam giác ACF ( theo câu a ) nên suy ra BE=FC  ( 2 cạnh tương ứng )
Ta có: AFC + CFB = 180 Độ (2 góc kề bù)
          AEB + EBC = 180 độ ( 2 góc kề bù )
Mà AFC=AEB vì cùng bằng 90 độ nên CFB=BEC
Xét tam giác BFC và tam giác CEB có:
FB=EC ( chứng mình trên)
Góc B= góc C ( Theo trên)
Cạnh BC chung
Do đó tam giác BFC=tam giác CEB ( cạnh góc cạnh)
Vậy tam giác EBC= tam giác FCB (đpcm)