

Nguyễn Gia Khánh
Giới thiệu về bản thân



































a) \(x-\dfrac{3}{4}=6\times\dfrac{3}{8}\)
\(x-\dfrac{3}{4}=\dfrac{9}{4}\)
\(x=\dfrac{9}{4}+\dfrac{3}{4}\)
\(x=3\)
b) \(\dfrac{7}{8}\div x=3-\dfrac{1}{2}\)
\(\dfrac{7}{8}\div x=\dfrac{5}{2}\)
\(x=\dfrac{7}{8}\div\dfrac{5}{2}\)
\(x=\dfrac{7}{20}\)
c) \(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
\(x=\dfrac{3}{4}-\dfrac{1}{6}\)
\(x=\dfrac{7}{12}\)
a) \(x+2\dfrac{3}{4}=5\dfrac{2}{3}\)
\(x+\dfrac{11}{4}=\dfrac{17}{3}\)
\(x=\dfrac{17}{3}-\dfrac{11}{4}\)
\(x=\dfrac{35}{12}\)
b) \(x-1\dfrac{4}{5}=3\dfrac{2}{7}\)
\(x-\dfrac{9}{5}=\dfrac{23}{7}\)
\(x=\dfrac{23}{7}+\dfrac{9}{5}\)
\(x=\dfrac{178}{35}\)
c) \(x\times3\dfrac{1}{2}=4\dfrac{3}{4}\)
\(x\times\dfrac{7}{2}=\dfrac{19}{4}\)
\(x=\dfrac{19}{4}\div\dfrac{7}{2}\)
\(x=\dfrac{19}{14}\)
d) \(x\div2\dfrac{2}{3}=4\dfrac{1}{3}\)
\(x\div\dfrac{8}{3}=\dfrac{13}{3}\)
\(x=\dfrac{13}{3}\times\dfrac{8}{3}\)
\(x=\dfrac{104}{9}\)
\(\dfrac{130050}{425}=306\)
Ta đặt
\(A=\dfrac{1}{50}-\dfrac{1}{50\times49}-....-\dfrac{1}{2\times1}\)
\(A=\dfrac{1}{50}-\left(\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+...+\dfrac{1}{49\times50}\right)\)
\(A=\dfrac{1}{50}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)\)
\(A=\dfrac{1}{50}-\left(1-\dfrac{1}{50}\right)\)
\(A=\dfrac{1}{50}-\dfrac{49}{50}\)
\(A=\dfrac{-48}{50}=\dfrac{-24}{25}\)
1.A
2.A
3.D
4.A
5.A
6.D
7.C
8.C
9.A
10.A
11.C
\(24\times66-24+36\times24=24\times\left(66-1+36\right)\)
\(=24\times101\)
\(=2424\)
Gọi ƯCLN(5m+1,4m+1) là d \(\left(d\ne0\right)\)
=> \(5m+1⋮d;4m+1⋮d\)
=> \(4\left(5m+1\right)⋮d;5\left(4m+1\right)⋮d\)
=> \(20m+4⋮d;20m+5⋮d\)
=> \(\left(20m+5\right)-\left(20m+4\right)⋮d\)
=> \(1⋮d\)
=> \(d=1\)
Vậy 5m +1 và 4m +1 là hai số nguyên tố cùng nhau
\(\dfrac{1}{2}-\dfrac{1}{3}x=\dfrac{-1}{6}\)
\(\dfrac{1}{3}x=\dfrac{1}{2}+\dfrac{1}{6}\)
\(\dfrac{1}{3}x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}\div\dfrac{1}{3}\)
\(x=2\)
=>\(x=1\dfrac{1}{1}\)
\(x\left(x-y\right)=\dfrac{10}{9}\) (1)
\(y\left(x-y\right)=\dfrac{-2}{3}\) (2)
Trừ 1 và 2, ta được:
\(x\left(x-y\right)-y\left(x-y\right)=\dfrac{10}{9}-\left(\dfrac{-2}{3}\right)\)
\(\left(x-y\right)\times\left(x-y\right)=\dfrac{16}{9}\)
\(\left(x-y\right)^2=\left(\pm\dfrac{4}{3}\right)^2\)
=> \(x-y=\pm\dfrac{4}{3}\)
TH1:
Nếu \(x-y=\dfrac{4}{3}\) thay vào 1 và 2, Ta có:
\(x\times\dfrac{4}{3}=\dfrac{10}{9}\) => \(x=\dfrac{10}{9}\div\dfrac{4}{3}\) => \(x=\dfrac{5}{6}\)
\(y\times\dfrac{4}{3}=\dfrac{-2}{3}\) => \(y=\dfrac{-2}{3}\div\dfrac{4}{3}\) => \(y=-\dfrac{1}{2}\)
TH2:
+) Nếu \(x-y=-\dfrac{4}{3}\) thay vào 1 và 2, ta được:
\(x\times\dfrac{-4}{3}=\dfrac{10}{9}\) => \(x=\dfrac{10}{9}\div\dfrac{-4}{3}=\dfrac{-5}{6}\)
\(y\times\dfrac{-4}{3}=\dfrac{-2}{3}\) => \(y=\dfrac{-2}{3}\div\dfrac{-4}{3}=\dfrac{1}{2}\)
Vậy ta có 2 cặp số (x,y) thoả mãn là \(\left(\dfrac{5}{6},\dfrac{-1}{2}\right);\left(\dfrac{-5}{6},\dfrac{1}{2}\right)\)
\(\dfrac{3}{4}\) khối 3 = \(\dfrac{1}{3}\)khối 4 = \(\dfrac{1}{5}\) khối 5
\(\dfrac{3}{4}\) khối 3 = \(\dfrac{3}{9}\) khối 4 = \(\dfrac{3}{15}\) khối 5
Ta coi số cây khối 3 trồng là 4 phần, khối 4 là 9 phần, khối 5 là 15 phần
Tổng số phần là:
\(4+9+15=28\) (phần)
Số cây khối 3 trồng là:
\(\left(728\div28\right)\times4=104\) (cây)
Số cây khối 4 trồng là:
\(\left(728\div28\right)\times9=234\) (cây)
Số cây khối 5 trồng là:
\(728-104-234=390\) (cây)