

Nguyễn Gia Khánh
Giới thiệu về bản thân



































\(435\times16+565\times17\)
\(=435\times16+565\times\left(16+1\right)\)
\(=435\times16+565\times16+565\)
\(=16\times\left(435+565\right)+565\)
\(=16\times1000+565\)
\(=16000+565\)
\(=16565\)
\(\left(\dfrac{1}{3}\right)^{2x-1}=\dfrac{1}{243}\)
\(\left(\dfrac{1}{3}\right)^{2x-1}=\left(\dfrac{1}{3}\right)^5\)
=> \(2x-1=5\)
\(2x=6\)
\(x=3\)
Gọi số tự nhiên có 2 chữ số là \(\overline{\overline{ab}}\left(a\ne0\right)\)
Theo bài cho (1), ta có: \(\overline{\overline{ab}\times10=\overline{a0b}}\)
\(\left(a\times10+b\right)\times10=a\times100+b\)
\(a\times100+b\times10=a\times100+b\)
\(a\times100-a\times100+b\times10-b=0\)
\(b\times9=0\)
\(b=0\)
Theo bài cho (2), ta có: \(\overline{\overline{1a0b}=3\times\overline{a0b}}\)
Thay b=0 , ta có:
\(\overline{\overline{1a00}=3\times\overline{a00}}\)
\(3\times a\times100=1000+a\times100\)
\(3\times a\times100-a\times100=1000\)
\(a\times100\times\left(3-1\right)=1000\)
\(a\times2=1000\div100\)
\(a\times2=10\)
\(a=5\)
Vậy số tự nhiên có 2 chữ số cần tìm là 50
Sửa lại thì thành
\(S=2^1+2^2+2^3+...+2^{10}\)
\(2S=2^2+2^3+2^4+...+2^{11}\)
\(2S-S=\left(2^2+2^3+2^4+....+2^{11}\right)-\left(2^1+2^2+2^3+...+2^{10}\right)\)
\(S=2^{11}-2\)
Bạn ơi chỗ \(2^2+2^2\) thì phải là \(2^1+2^2\) chứ
\(x\times4+12\times x=55,35\)
\(x\times\left(4+12\right)=55,35\)
\(x\times16=55,35\)
\(x=55,35\div16\)
\(x=\dfrac{1107}{320}\)
\(\left(\dfrac{-1}{3}\right)^{-1}=-3\)
Vì \(\left(\dfrac{-1}{3}\right)^{-1}=\left(\dfrac{1}{-3}\right)^{-1}=\left(-3^{-1}\right)^{-1}=-3^{-1\times\left(-1\right)}=-3^1=-3\)
=> \(\left(\dfrac{-1}{3}\right)^{-1}=-3\)
3 phải là Mi chứ bạn
\(\dfrac{5}{2}\times\dfrac{3}{7}-\dfrac{3}{4}\div\dfrac{7}{3}=\dfrac{5}{2}\times\dfrac{3}{7}-\dfrac{3}{4}\times\dfrac{3}{7}=\dfrac{5}{2}\times\dfrac{3}{7}-\dfrac{3}{7}\times\dfrac{3}{4}\)
\(=\dfrac{3}{7}\times\left(\dfrac{5}{2}-\dfrac{3}{4}\right)=\dfrac{3}{7}\times\dfrac{7}{4}=\dfrac{3}{4}\)
\(\dfrac{5}{4}\div\dfrac{15}{12}-\dfrac{5}{4}\div\dfrac{1}{2}=\dfrac{5}{4}\times\dfrac{12}{15}-\dfrac{5}{4}\times2\)
\(=\dfrac{5}{4}\times\left(\dfrac{12}{15}-2\right)\)
\(=\dfrac{5}{4}\times\dfrac{-6}{5}=\dfrac{-3}{2}\)
\(\dfrac{1}{26}+\dfrac{7}{30}+\dfrac{12}{26}+\dfrac{8}{3}=\left(\dfrac{1}{26}+\dfrac{12}{26}\right)+\left(\dfrac{7}{30}+\dfrac{8}{3}\right)\)
\(=\dfrac{1}{2}+\dfrac{29}{10}=\dfrac{17}{5}\)