Nguyễn Ngọc Kỳ Duyên

Giới thiệu về bản thân

Face:Nguyễn Duyên Tik:nguyenngockyduyen782010 Ins:Nguyễn Ngọc Kỳ Duyên
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có ���� là hình thoi nên ��⊥�� tại trung điểm của mỗi đường nên �� là trung trực của ��

Suy ra ��=��,��=�� (1)

Và �� là trung trực của �� suy ra ��=��,��=�� (2)

Từ (1),(2) suy ra ��=��=��=�� nên ���� là hình thoi.

 ���� là hình bình hành nên hai đường chéo ��,�� cắt nhau tại  là trung điểm của mỗi đường.

Xét Δ��� và Δ��� có:

     ��=�� ( giả thiết)

     ���^=���^ (so le trong)

     ���^=���^ (đối đỉnh)

Vậy Δ���=Δ��� (g.c.g)

Suy ra ��=�� (hai cạnh tương ứng)

Chứng minh tương tự Δ���=Δ��� (g.c.g) suy ra ��=�� (hai cạnh tương ứng)

���� có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

b) Hình bình hành ���� có hai đường chéo ��⊥�� nên là hình thoi.

ABCD là hình bình hành nên AB//CD và AB = CD 

Mà AM = 1/2 AB, DN = NC = 1/2 DC ⇒��=��=��

Do đó: AMCN và AMND là hình bình hành 

MN // AD (cmt)

Kết hợp với ��⊥��(��)⇒��⊥��(1)

Mặt khác, AMCN là hình bình hành (2)

Từ (1) và (2), ta được AMCN là hình thoi.