Anime
Giới thiệu về bản thân
Áp dụng BĐT Bunhiacopxki:
\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}\ge\sqrt{\left(ac+bc\right)^2}=ac+bc\)
CMTT : \(\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ad+bd\)
Ta có :\(\sqrt{\left(a^2+c^2\right)\left(b^2+c^2\right)}+\sqrt{\left(a^2+d^2\right)\left(b^2+d^2\right)}\ge ac+bc+ad+bd=\left(a+b\right)\left(c+d\right)\)
\(\Delta'=\left[-\left(m+1\right)\right]^2-\left(2m-2\right)\)
= m2 + 2m + 1 - 2m + 2 = m2 + 3 > 0 (vì m2 ≥ 0)
⇒ Phương trình có 2 nghiệm phân biệt x1, x2
Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=2m-2\end{matrix}\right.\)
Ta có: x12 + x22 + 3x1x2 = 25
⇔ (x1 + x2)2 - 2x1x2 + 3x1x2 = 25
⇔ (x1 + x2)2 + x1x2 = 25
⇔ [2(m + 1)]2 + (2m - 2) = 25
⇔ 4m2 + 8m + 4 + 2m - 2 - 25 = 0
⇔ 4m2 + 10m - 23 = 0
⇔ \(\left[{}\begin{matrix}m=\dfrac{-5+3\sqrt{13}}{4}\\m=\dfrac{-5-3\sqrt{13}}{4}\end{matrix}\right.\)
Vậy m = ...
1. Vì (d) cắt trục hoành tại điểm có hoành độ = 2 nên điểm đó có tọa độ (2;0) => x = 2; y = 0
Thay x = 2; y = 0 vào (d) ta có: 0 = (2 - m).2 + m + 1
<=> 4 - 2m + m + 1 = 0 <=> 5 - m = 0 <=> m = 5
Vậy m = 5 thì thỏa mãn
2. \(\left\{{}\begin{matrix}3x+2y=11\\x-2y=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}4x=12\\x-2y=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=3\\3-2y=1\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=3\\y=1\end{matrix}\right.\)
Vậy hệ phương trình có nghiệm (x;y)=(3;1)
Thứ 6 ngày 28 tháng 4
\(\dfrac{12}{7}\times\dfrac{4}{13}+\dfrac{12}{14}\times\dfrac{14}{26}-\dfrac{6}{7}\times\dfrac{2}{13}\)
= \(\dfrac{6}{7}\times\dfrac{4\times2}{13}+\dfrac{6}{7}\times\dfrac{7}{13}-\dfrac{6}{7}\times\dfrac{2}{13}\)
= \(\dfrac{6}{7}\times\left(\dfrac{8}{13}+\dfrac{7}{13}-\dfrac{2}{13}\right)\)
= \(\dfrac{6}{7}\times1\) = \(\dfrac{6}{7}\)