

TRÂM ANH
Giới thiệu về bản thân
Chào mừng bạn đến với trang cá nhân của TRÂM ANH





0





0





0





0





0





0





0
2025-08-04 22:13:03
Cho AOB̂+A2̂−180∘=B1̂modifying-above cap A cap O cap B with hat plus cap A sub 2 hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat𝐴𝑂𝐵+𝐴2−180∘=𝐵1. Chứng minh rằng Ax//Bycap A x / / cap B y𝐴𝑥//𝐵𝑦. Chứng minh:
- 1. Từ giả thiết AOB̂+A2̂−180∘=B1̂modifying-above cap A cap O cap B with hat plus cap A sub 2 hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat𝐴𝑂𝐵+𝐴2−180∘=𝐵1, ta suy ra AOB̂+A2̂=180∘+B1̂modifying-above cap A cap O cap B with hat plus cap A sub 2 hat equals 180 raised to the exponent composed with end-exponent plus cap B sub 1 hat𝐴𝑂𝐵+𝐴2=180∘+𝐵1.
- 2. Kẻ tia Ozcap O z𝑂𝑧song song với Axcap A x𝐴𝑥(với zz𝑧nằm cùng phía với Bcap B𝐵so với đường thẳng AOcap A cap O𝐴𝑂).
- 3. Vì Oz//Axcap O z / / cap A x𝑂𝑧//𝐴𝑥nên A2̂=AOẑcap A sub 2 hat equals modifying-above cap A cap O z with hat𝐴2=𝐴𝑂𝑧(hai góc so le trong).
- 4. Ta có AOB̂=AOẑ+BOẑmodifying-above cap A cap O cap B with hat equals modifying-above cap A cap O z with hat plus modifying-above cap B cap O z with hat𝐴𝑂𝐵=𝐴𝑂𝑧+𝐵𝑂𝑧.
- 5. Thay AOẑ=A2̂modifying-above cap A cap O z with hat equals cap A sub 2 hat𝐴𝑂𝑧=𝐴2vào biểu thức trên, ta được AOB̂=A2̂+BOẑmodifying-above cap A cap O cap B with hat equals cap A sub 2 hat plus modifying-above cap B cap O z with hat𝐴𝑂𝐵=𝐴2+𝐵𝑂𝑧.
- 6. Kết hợp với bước 1, ta có A2̂+BOẑ+A2̂=180∘+B1̂cap A sub 2 hat plus modifying-above cap B cap O z with hat plus cap A sub 2 hat equals 180 raised to the exponent composed with end-exponent plus cap B sub 1 hat𝐴2+𝐵𝑂𝑧+𝐴2=180∘+𝐵1.
- 7. Suy ra 2A2̂+BOẑ=180∘+B1̂2 cap A sub 2 hat plus modifying-above cap B cap O z with hat equals 180 raised to the exponent composed with end-exponent plus cap B sub 1 hat2𝐴2+𝐵𝑂𝑧=180∘+𝐵1.
- 8. Trong trường hợp này, có vẻ như đề bài muốn sử dụng tính chất của các góc tạo bởi một đường thẳng cắt hai đường thẳng song song.
- 9. Nếu Ax//Bycap A x / / cap B y𝐴𝑥//𝐵𝑦, thì A2̂+AOB̂+B1̂=360∘cap A sub 2 hat plus modifying-above cap A cap O cap B with hat plus cap B sub 1 hat equals 360 raised to the exponent composed with end-exponent𝐴2+𝐴𝑂𝐵+𝐵1=360∘(tổng các góc trong cùng phía của một hình thang). Hoặc sử dụng định lý về góc so le trong, góc đồng vị.
- 10. Cách khác để chứng minh:
- Kẻ đường thẳng dd𝑑qua Ocap O𝑂song song với Axcap A x𝐴𝑥.
- Khi đó, xAÔ=AOd̂modifying-above x cap A cap O with hat equals modifying-above cap A cap O d with hat𝑥𝐴𝑂=𝐴𝑂𝑑(hai góc so le trong).
- Ta có AOB̂=AOd̂+dOB̂modifying-above cap A cap O cap B with hat equals modifying-above cap A cap O d with hat plus modifying-above d cap O cap B with hat𝐴𝑂𝐵=𝐴𝑂𝑑+𝑑𝑂𝐵.
- Suy ra AOB̂=xAÔ+dOB̂modifying-above cap A cap O cap B with hat equals modifying-above x cap A cap O with hat plus modifying-above d cap O cap B with hat𝐴𝑂𝐵=𝑥𝐴𝑂+𝑑𝑂𝐵.
- Theo giả thiết AOB̂+A2̂−180∘=B1̂modifying-above cap A cap O cap B with hat plus cap A sub 2 hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat𝐴𝑂𝐵+𝐴2−180∘=𝐵1.
- Thay A2̂=xAÔcap A sub 2 hat equals modifying-above x cap A cap O with hat𝐴2=𝑥𝐴𝑂vào, ta có AOB̂+xAÔ−180∘=B1̂modifying-above cap A cap O cap B with hat plus modifying-above x cap A cap O with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat𝐴𝑂𝐵+𝑥𝐴𝑂−180∘=𝐵1.
- (xAÔ+dOB̂)+xAÔ−180∘=B1̂open paren modifying-above x cap A cap O with hat plus modifying-above d cap O cap B with hat close paren plus modifying-above x cap A cap O with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat(𝑥𝐴𝑂+𝑑𝑂𝐵)+𝑥𝐴𝑂−180∘=𝐵1.
- 2xAÔ+dOB̂−180∘=B1̂2 modifying-above x cap A cap O with hat plus modifying-above d cap O cap B with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat2𝑥𝐴𝑂+𝑑𝑂𝐵−180∘=𝐵1.
- Để chứng minh Ax//Bycap A x / / cap B y𝐴𝑥//𝐵𝑦, ta cần chứng minh dOB̂+B1̂=180∘modifying-above d cap O cap B with hat plus cap B sub 1 hat equals 180 raised to the exponent composed with end-exponent𝑑𝑂𝐵+𝐵1=180∘(hai góc trong cùng phía).
- Từ 2xAÔ+dOB̂−180∘=B1̂2 modifying-above x cap A cap O with hat plus modifying-above d cap O cap B with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat2𝑥𝐴𝑂+𝑑𝑂𝐵−180∘=𝐵1, ta có dOB̂−B1̂=180∘−2xAÔmodifying-above d cap O cap B with hat minus cap B sub 1 hat equals 180 raised to the exponent composed with end-exponent minus 2 modifying-above x cap A cap O with hat𝑑𝑂𝐵−𝐵1=180∘−2𝑥𝐴𝑂.
- Điều này chỉ đúng khi 180∘−2xAÔ=180∘180 raised to the exponent composed with end-exponent minus 2 modifying-above x cap A cap O with hat equals 180 raised to the exponent composed with end-exponent180∘−2𝑥𝐴𝑂=180∘, tức là 2xAÔ=02 modifying-above x cap A cap O with hat equals 02𝑥𝐴𝑂=0, điều này vô lý.
- 1. Kẻ đường thẳng Ozcap O z𝑂𝑧song song với Axcap A x𝐴𝑥(tia Ozcap O z𝑂𝑧nằm giữa OAcap O cap A𝑂𝐴và OBcap O cap B𝑂𝐵).
- 2. Vì Oz//Axcap O z / / cap A x𝑂𝑧//𝐴𝑥nên A2̂=AOẑcap A sub 2 hat equals modifying-above cap A cap O z with hat𝐴2=𝐴𝑂𝑧(hai góc so le trong).
- 3. Ta có AOB̂=AOẑ+BOẑmodifying-above cap A cap O cap B with hat equals modifying-above cap A cap O z with hat plus modifying-above cap B cap O z with hat𝐴𝑂𝐵=𝐴𝑂𝑧+𝐵𝑂𝑧.
- 4. Thay AOẑ=A2̂modifying-above cap A cap O z with hat equals cap A sub 2 hat𝐴𝑂𝑧=𝐴2, ta được AOB̂=A2̂+BOẑmodifying-above cap A cap O cap B with hat equals cap A sub 2 hat plus modifying-above cap B cap O z with hat𝐴𝑂𝐵=𝐴2+𝐵𝑂𝑧.
- 5. Thay biểu thức này vào giả thiết: (A2̂+BOẑ)+A2̂−180∘=B1̂open paren cap A sub 2 hat plus modifying-above cap B cap O z with hat close paren plus cap A sub 2 hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat(𝐴2+𝐵𝑂𝑧)+𝐴2−180∘=𝐵1.
- 6. 2A2̂+BOẑ−180∘=B1̂2 cap A sub 2 hat plus modifying-above cap B cap O z with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat2𝐴2+𝐵𝑂𝑧−180∘=𝐵1.
- 7. Để Ax//Bycap A x / / cap B y𝐴𝑥//𝐵𝑦, ta cần chứng minh Oz//Bycap O z / / cap B y𝑂𝑧//𝐵𝑦. Điều này xảy ra khi BOẑ+B1̂=180∘modifying-above cap B cap O z with hat plus cap B sub 1 hat equals 180 raised to the exponent composed with end-exponent𝐵𝑂𝑧+𝐵1=180∘(hai góc trong cùng phía).
- 8. Từ 2A2̂+BOẑ−180∘=B1̂2 cap A sub 2 hat plus modifying-above cap B cap O z with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat2𝐴2+𝐵𝑂𝑧−180∘=𝐵1, ta có BOẑ−B1̂=180∘−2A2̂modifying-above cap B cap O z with hat minus cap B sub 1 hat equals 180 raised to the exponent composed with end-exponent minus 2 cap A sub 2 hat𝐵𝑂𝑧−𝐵1=180∘−2𝐴2.
- 9. Để BOẑ+B1̂=180∘modifying-above cap B cap O z with hat plus cap B sub 1 hat equals 180 raised to the exponent composed with end-exponent𝐵𝑂𝑧+𝐵1=180∘, thì 180∘−2A2̂=-2B1̂180 raised to the exponent composed with end-exponent minus 2 cap A sub 2 hat equals negative 2 cap B sub 1 hat180∘−2𝐴2=−2𝐵1.
- 10. Điều này không suy ra trực tiếp từ giả thiết.
- A2̂cap A sub 2 hat𝐴2là góc OAxcap O cap A x𝑂𝐴𝑥.
- B1̂cap B sub 1 hat𝐵1là góc yBOy cap B cap O𝑦𝐵𝑂.
- 1. Kẻ Ot//Axcap O t / / cap A x𝑂𝑡//𝐴𝑥( Otcap O t𝑂𝑡 nằm trong góc AOBcap A cap O cap B𝐴𝑂𝐵).
- 2. Vì Ot//Axcap O t / / cap A x𝑂𝑡//𝐴𝑥nên A2̂=AOt̂cap A sub 2 hat equals modifying-above cap A cap O t with hat𝐴2=𝐴𝑂𝑡(hai góc so le trong).
- 3. Ta có AOB̂=AOt̂+tOB̂modifying-above cap A cap O cap B with hat equals modifying-above cap A cap O t with hat plus modifying-above t cap O cap B with hat𝐴𝑂𝐵=𝐴𝑂𝑡+𝑡𝑂𝐵.
- 4. Thay AOt̂=A2̂modifying-above cap A cap O t with hat equals cap A sub 2 hat𝐴𝑂𝑡=𝐴2vào, ta được AOB̂=A2̂+tOB̂modifying-above cap A cap O cap B with hat equals cap A sub 2 hat plus modifying-above t cap O cap B with hat𝐴𝑂𝐵=𝐴2+𝑡𝑂𝐵.
- 5. Thay vào giả thiết: (A2̂+tOB̂)+A2̂−180∘=B1̂open paren cap A sub 2 hat plus modifying-above t cap O cap B with hat close paren plus cap A sub 2 hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat(𝐴2+𝑡𝑂𝐵)+𝐴2−180∘=𝐵1.
- 6. 2A2̂+tOB̂−180∘=B1̂2 cap A sub 2 hat plus modifying-above t cap O cap B with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat2𝐴2+𝑡𝑂𝐵−180∘=𝐵1.
- 7. Để Ax//Bycap A x / / cap B y𝐴𝑥//𝐵𝑦, thì Ot//Bycap O t / / cap B y𝑂𝑡//𝐵𝑦. Khi đó, tOB̂+B1̂=180∘modifying-above t cap O cap B with hat plus cap B sub 1 hat equals 180 raised to the exponent composed with end-exponent𝑡𝑂𝐵+𝐵1=180∘(hai góc trong cùng phía).
- 8. Nếu tOB̂+B1̂=180∘modifying-above t cap O cap B with hat plus cap B sub 1 hat equals 180 raised to the exponent composed with end-exponent𝑡𝑂𝐵+𝐵1=180∘thì từ 2A2̂+tOB̂−180∘=B1̂2 cap A sub 2 hat plus modifying-above t cap O cap B with hat minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat2𝐴2+𝑡𝑂𝐵−180∘=𝐵1, ta có 2A2̂+(180∘−B1̂)−180∘=B1̂2 cap A sub 2 hat plus open paren 180 raised to the exponent composed with end-exponent minus cap B sub 1 hat close paren minus 180 raised to the exponent composed with end-exponent equals cap B sub 1 hat2𝐴2+(180∘−𝐵1)−180∘=𝐵1.
- 9. 2A2̂−B1̂=B1̂2 cap A sub 2 hat minus cap B sub 1 hat equals cap B sub 1 hat2𝐴2−𝐵1=𝐵1.
- 10. 2A2̂=2B1̂2 cap A sub 2 hat equals 2 cap B sub 1 hat2𝐴2=2𝐵1.
- 11. A2̂=B1̂cap A sub 2 hat equals cap B sub 1 hat𝐴2=𝐵1.
- Kẻ đường thẳng dd𝑑qua Ocap O𝑂song song với Axcap A x𝐴𝑥.
- Khi đó, A2̂=O1̂cap A sub 2 hat equals cap O sub 1 hat𝐴2=𝑂1(góc so le trong).
- Nếu Ax//Bycap A x / / cap B y𝐴𝑥//𝐵𝑦, thì d//Byd / / cap B y𝑑//𝐵𝑦.