Lương Đức Khánh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lương Đức Khánh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Cho hình vuông \(A B C D\). Trên các cạnh \(A B , B C ,\) \(C D , D A\) lấy lần lượt các điểm \(M , N , P , Q\) sao cho \(A M = B N = C P = D Q .\)

a) Chứng minh \(M B = N C = P D = Q A .\)

b) Chứng minh \(\Delta Q A M = \Delta N C P .\)

c) Chứng minh \(M N P Q\) là hình vuông.

Hướng dẫn giải:

a) \(A B C D\) là hình vuông nên \(A B = B C = C D = D A\)

Mà \(A M = B N = C P = D Q\).

Trừ theo vế ta được \(A B - A M = B C - B N = C D - C P = D A - D Q\)

Suy ra \(M B = N C = P D = Q A\)

b) Xét \(\Delta Q A M\) và \(\Delta N C P\) có:

\(\hat{A} = \hat{C} = 90^{\circ}\)

\(A Q = N C\) (chứng minh trên)

\(A M = C P\) (giả thiết)

Suy ra \(\Delta Q A M = \Delta N C P\) (c.g.c)

c) Từ \(\Delta Q A M = \Delta N C P\) suy ra \(N P = M Q\) (hai cạnh tương ứng).

Chứng minh tương tự câu b ta có \(\Delta Q A M = \Delta P D Q\) và \(\Delta Q A M = \Delta M B N\).

Khi đó \(\Rightarrow M Q = P Q , M N = M Q\) và \(\hat{A M Q} = \hat{D Q P}\).

Mà \(\hat{A M Q} + \hat{A Q M} = 90^{\circ}\) suy ra \(\hat{D Q P} + \hat{A Q M} = 90^{\circ}\).

Do đó, \(\hat{M Q P} = 90^{\circ}\).

Tứ giác \(M N P Q\) có bốn cạnh bằng nhau nên là hình thoi, lại có \(\hat{M Q P} = 90^{\circ}\) nên là hình vuông.

Cho \(\Delta A B C\) vuông tại \(A ,\) đường trung tuyến \(A M .\) Gọi \(I\) là trung điểm của \(A C\). Trên tia đối của tia \(I M\) lấy điểm \(K\) sao cho \(I K = I M .\)

a) Chứng minh \(A M C K\) là hình thoi.

b) Chứng minh \(A K M B\) là hình bình hành.

c) Tìm điều kiện của \(\Delta A B C\) để tứ giác \(A M C K\) là hình vuông. 

Hướng dẫn giải:

a) Tứ giác \(A M C K\) có hai đường chéo \(A C , M K\) cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

\(\Delta A B C\) vuông tại \(A\) có \(A M\) là đường trung tuyến nên \(A M = M C = M B\).

Vậy hình bình hành \(A M C K\) có \(A M = M C\) nên là hình thoi.

b) Vì \(A M C K\) là hình thoi nên \(A K\) // \(B M\) và \(A K = M C = B M\).

Tứ giác \(A K M B\) có \(A K\) // \(B M , A K = B M\) nên là hình bình hành.

c) Để \(A M C K\) là hình vuông thì cần có một góc vuông hay \(A M ⊥ M C\).

Khi đó \(\Delta A B C\) có \(A M\) vừa là đường cao vừa là đường trung tuyến nên cân tại \(A\).

Vậy \(\Delta A B C\) vuông cân tại \(A\) thì \(A M C K\) là hình vuông.

Cho \(\Delta A B C\) vuông cân tại \(A\). Trên cạnh \(B C\) lấy hai điểm \(H , G\) sao cho \(B H = H G = G C .\) Qua \(H\) và \(G\) kẻ các đường thẳng vuông góc với \(B C\) chúng cắt \(A B , A C\) lần lượt tại \(E , F .\)

a) Chứng minh \(\Delta B H E\) là tam giác vuông cân.

b) Chứng minh tứ giác \(E F G H\) là hình vuông.

Hướng dẫn giải:

a) \(\Delta A B C\) vuông cân nên \(\hat{B} = \hat{C} = 45^{\circ} .\)

\(\Delta B H E\) vuông tại \(H\) có \(\hat{B E H} + \hat{B} = 90^{\circ}\)

Suy ra \(\hat{B E H} = 90^{\circ} - 45^{\circ} = 45^{\circ}\) nên \(\hat{B} = \hat{B E H} = 45^{\circ}\).

Vậy \(\Delta B E H\) vuông cân tại \(H .\)

b) Chứng minh tương tự câu a ta được \(\Delta C F G\) vuông cân tại \(G\) nên \(G F = G C\) và \(H B = H E\)

Mặt khác \(B H = H G = G C\) suy ra \(E H = H G = G F\) và \(E H\) // \(F G\) (cùng vuông góc với \(B C \left.\right)\)

Tứ giác \(E F G H\) có \(E H\) // \(F G , E H = F G\) nên là hình bình hành.

Hình bình hành \(E F G H\) có một góc vuông \(\hat{H}\) nên là hình chữ nhật

Hình chữ nhật \(E F G H\) có hai cạnh kề bằng nhau \(E H = H G\) nên là hình vuông.

Tứ giác \(O B A C\) có ba góc vuông \(\hat{B} = \hat{C} = \hat{B O C} = 90^{\circ}\)

Nên \(O B A C\) là hình chữ nhật.

Mà \(A\) nằm trên tia phân giác \(O M\) suy ra \(A B = A C\).

Khi đó \(O B A C\) là hình vuông.

Cho hình bình hành \(A B C D\). Hai đường chéo \(A C , B D\) cắt nhau tại \(O .\) Đường thẳng \(m\) đi qua \(O\) cắt \(A B , C D\) lần lượt tại \(M\) và \(P .\) Đường thẳng \(n\) đi qua \(O\) và vuông góc với \(m\) cắt cạnh \(B C\) và \(D A\) lần lượt tại \(N\) và \(Q .\)

a) Chứng minh \(M N P Q\) là hình bình hành.

b) Chứng minh \(M N P Q\) là hình thoi.

Hướng dẫn giải:

a) \(A B C D\) là hình bình hành nên hai đường chéo \(A C , B D\) cắt nhau tại \(O\) là trung điểm của mỗi đường.

Xét \(\Delta O B M\) và \(\Delta O D P\) có:

     \(O B = O D\) ( giả thiết)

     \(\hat{O B M} = \hat{O D P}\) (so le trong)

     \(\hat{B O M} = \hat{D O P}\) (đối đỉnh)

Vậy \(\Delta O B M = \Delta O D P\) (g.c.g)

Suy ra \(O M = O P\) (hai cạnh tương ứng)

Chứng minh tương tự \(\Delta O A Q = \Delta O C N\) (g.c.g) suy ra \(O Q = O N\) (hai cạnh tương ứng)

\(M N P Q\) có hai đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành.

b) Hình bình hành \(M N P Q\) có hai đường chéo \(M P ⊥ N Q\) nên là hình thoi.

Cho hình bình hành \(A B C D\) có \(A D ⊥ A C .\) Gọi \(M , N\) lần lượt là trung điểm của \(A B , C D .\)

a) Chứng minh \(M N ⊥ A C .\)

b) Tứ giác \(A M C N\) là hình gì?

Hướng dẫn giải:

a) \(A B C D\) là hình bình hành nên \(A B = D C\) suy ra \(\frac{1}{2} A B = \frac{1}{2} D C\)

Do đó \(A M = B M = D N = C N\).

Tứ giác \(A M C N\) có \(A M\) // \(N C , A M = N C\) nên là hình bình hành.

Lại có \(\Delta A D C\) vuông tại \(A\) có \(A N\) là đường trung tuyến nên \(A N = \frac{1}{2} D C = D N = C N\).

Hình bình hành \(A M C N\) có hai cạnh kề bằng nhau nên là hình thoi, khi đó hai đường chéo \(A C , M N\) vuông góc với nhau.

Tứ giác \(A M C N\) là hình thoi.

Ta có \(A B C D\) là hình thoi nên \(A C ⊥ B D\) tại trung điểm của mỗi đường nên \(B D\) là trung trực của \(A C\)

Suy ra \(G A = G C , H A = H C\) \(\left(\right. 1 \left.\right)\)

Và \(A C\) là trung trực của \(B D\) suy ra \(A G = A H , C G = C H\) \(\left(\right. 2 \left.\right)\)

Từ \(\left(\right. 1 \left.\right) , \left(\right. 2 \left.\right)\) suy ra \(A G = G C = C H = H A\) nên \(A G C H\) là hình thoi.

a) Ta có: \(A x ⊥ A C\) và \(B y\) // \(A C\)

Suy ra \(A x ⊥ B y\) \(\Rightarrow \hat{A M B} = 9 0^{\circ}\).

Xét \(\Delta M A Q\) và \(\Delta Q B M\) có

\(\hat{M Q A} = \hat{B M Q}\) (so le trong);

\(M Q\) là cạnh chung;

\(\hat{A M Q} = \hat{B Q M}\) (\(A x\) // \(Q B\)).

Suy ra \(\Delta M A Q = \&\text{nbsp}; \Delta Q B M\) (g-c-g)

Suy ra \(\hat{M B Q} = \hat{M A Q} = 9 0^{\circ}\) (2 góc tương ứng)

Xét tứ giác \(A M B Q\) có: \(\hat{Q A M} = \hat{A M B} = \hat{M B Q} = 9 0^{\circ}\)

Suy ra tứ giác \(A M B Q\) là hình chữ nhật.

b) Do tứ giác \(A M B Q\) là hình chữ nhật.

Mà \(P\) là trung điểm AB\(n \hat{e} n\)PQ=\dfrac{1}{2}AB$ (1)

Xét \(\Delta A I B\) vuông tại \(I\) và có \(I P\) là đường trung tuyến.

Suy ra \(I P = \frac{1}{2} A B\) (2)

Từ (1) và (2) \(\Rightarrow Q P = I P \Rightarrow \Delta P Q I\) cân tại \(P\).

Xét \(\Delta A B C\) có \(B M\) là đường trung tuyến ứng với cạnh \(A C\) mà \(B M = \frac{1}{2} A C\) suy ra \(\Delta A B C\) vuông tại \(B\).

Tứ giác \(A B C D\) có \(\hat{A} = \hat{D} = \hat{B} = 90^{\circ}\)

Suy ra tứ giác \(A B C D\) là hình chữ nhật. 

Ta có \(I A = I C\) và \(I H = I D\).

Suy  ra \(A H C D\) là hình bình hành do có hai đường chéo \(A C\) và \(D H\) cắt nhau tại trung điểm \(I\).

Mà \(\hat{A H C} = 9 0^{\circ}\) suy ra \(A H C D\) là hình chữ nhật.