Lương Đức Khánh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lương Đức Khánh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Trong tam giác \(A D B\), ta có: \(M N\) // \(A B\) (gt)

Suy ra \(\frac{D N}{D B} \&\text{nbsp}; = \frac{M N}{A B}\) (hệ quả định lí Thalès) (1)

Trong tam giác \(A C B\), ta có: \(P Q\) // \(A B\) (gt)

Suy ra \(\frac{C Q}{C B} \&\text{nbsp}; = \frac{P Q}{A B}\) (hệ quả định lí Thalès) (2)

Lại có: \(N Q\) // \(A B\) (gt); \(A B\) // \(C D\) (gt)

Suy ra \(N Q\) // \(C D\)

Trong tam giác \(B D C\), ta có: \(N Q\) // \(C D\) (chứng minh trên)

Suy ra \(\frac{D N}{D B} \&\text{nbsp}; = \frac{C Q}{C B}\) (định lí Thalès) (3)

Từ (1), (2) và (3) suy ra \(\frac{M N}{A B} \&\text{nbsp}; = \frac{P Q}{A B} \&\text{nbsp}; h a y\)MN = PQ$ (đpcm).

Khi đó, \(A D\) là đường trung tuyến của tam giác \(A B C\).

Vì \(G\) là trọng tâm của tam giác \(A B C\) nên điểm \(G\) nằm trên cạnh \(A D\).

Ta có \(\frac{A G}{A D} = \frac{2}{3}\) hay \(A G = \frac{2}{3} A D\).

Vì \(M G\) // \(A B\), theo định lí Thalès, ta suy ra: \(\frac{A G}{A D} = \frac{B M}{B D} = \frac{2}{3}\).

Ta có \(B D = C D\) (vì \(D\) là trung điểm của cạnh \(B C\)) nên \(\frac{B M}{B C} = \frac{B M}{2 B D} = \frac{2}{2.3} = \frac{1}{3}\).

Do đó \(B M = \frac{1}{3} B C\) (đpcm).

Áp dụng định lí Thalès trong tam giác:

\(D E\) // \(A C\) nên \(\frac{A E}{A B} = \frac{C D}{B C}\);

\(D F\) // \(A C\) nên \(\frac{A F}{A C} = \frac{B D}{B C}\).

Khi đó, \(\frac{A E}{A B} + \frac{A F}{A C} = \frac{C D}{B C} + \frac{B D}{B C} = \frac{B C}{B C} = 1\).

a) Tứ giác \(A E D F\) có \(\hat{E A F} = \hat{A E D} = \hat{A F D} = 90^{\circ}\) nên là hình chữ nhật.

\(\Delta A B C\) vuông cân tại \(A\) có \(A M\) là trung tuyến nên \(A M\) cũng là đường phân giác \(\hat{E A F}\).

Hình chữ nhật \(A E D F\) có đường chéo \(A D\) là tia phân giác \(\hat{E A F}\) nên là hình vuông.

b) \(\Delta A E F\) vuông tại \(A\) có \(A E = A F\) nên vuông cân tại \(A\)

Suy ra \(\hat{F_{1}} = 45^{\circ} = \hat{C}\) mà \(\hat{F_{1}} , \hat{C}\) đồng vị nên \(E F\) // \(B C .\)

c) Gọi \(O\) là giao của \(A D\) với \(E F\) suy ra \(O E = O D = O F = O A\)

\(\Delta E N F\) vuông tại \(N\) có \(N O\) là đường trung tuyến nên \(N O = E O = F O\)

\(\Delta A N D\) có \(N O\) là đường trung tuyến mà \(N O = \frac{A D}{2}\) suy ra \(\Delta A N D\) vuông tại \(N .\)

a) Tứ giác \(A D M E\) có \(\hat{D A E} = \hat{D} = \hat{E} = 90^{\circ}\) nên \(A D M E\) là hình chữ nhật.

b) Vì \(D M ⊥ A B\) và \(A C ⊥ A B\) nên \(D M\) // \(A C\) suy ra \(\hat{C} = \hat{B M D}\) (so le trong).

Xét \(\Delta D M B\) và \(\Delta E C M\) có:

     \(\hat{D} = \hat{E} = 90^{\circ}\)

     \(B M = C M\) (giả thiết)

     \(\hat{D M B} = \hat{C}\) (so le trong)

Vậy \(\Delta D M B = \Delta E C M\) (cạnh huyền - góc nhọn)

Suy ra \(M E = B D\) (hai cạnh tương ứng) mà \(M E = A D\) nên \(A D = B D\).

Tứ giác \(A M B I\) có hai đường chéo \(A B , M I\) cắt nhau tại \(D\) là trung điểm của mỗi đường nên là hình bình hành.

Mà \(M I ⊥ A B\) suy ra \(A M B I\) là hình thoi.

c) Để \(A M B I\) là hình vuông thì \(A M ⊥ B M\) hay \(A M\) vừa là đường trung tuyến vừa là đường cao nên \(\Delta A B C\) vuông cân tại \(A .\)

d) Giả sử \(A M\) cắt \(P Q\) tại \(F\) và \(P Q\) cắt \(A H\) tại \(O\).

Khi đó \(\Delta O A Q\) có \(O A = O Q\) nên \(\&\text{nbsp}; \Delta O A Q\) cân tại \(O\) suy ra \(\hat{Q_{1}} = \hat{O A Q}\)

\(\Delta A M C\) cân tại \(M\) suy ra \(\hat{A_{1}} = \hat{C}\)

Do đó, \(\hat{A_{1}} + \hat{Q_{1}} = \hat{C} + \hat{O A Q} = 90^{\circ}\)

Suy ra \(\Delta F A Q\) vuông tại \(F\) hay \(A M ⊥ P Q .\)

Cho \(\Delta A B C\) nhọn có \(A B < A C .\) Gọi \(N\) là trung điểm của \(A C .\) Lấy điểm \(D\) trên tia \(B N\) sao cho \(B N = N D .\)

a) Chứng minh \(A B C D\) là hình bình hành.

b) Kẻ \(A P ⊥ B C , C Q ⊥ A D .\) Chứng minh \(P , N , Q\) thẳng hàng.

c) \(\Delta A B C\) cần thêm điều kiện gì để tứ giác \(A B C D\) là hình vuông.

Hướng dẫn giải:

a) Tứ giác \(A B C D\) có hai đường chéo \(A C , B D\) cắt nhau tại trung điểm \(N\) của mỗi đường nên là hình bình hành.

b) Ta có \(A P ⊥ B C\)\(A Q\) // \(B C\) suy ra \(A P ⊥ A Q\).

Tứ giác \(A P C Q\) có ba góc vuông nên là hình chữ nhật.

Khi đó hai đường chéo \(A C , P Q\) cắt nhau tại trung điểm của mỗi đường, mà \(N A = N C\) nên \(N\) là trung điểm của \(P Q\).

Suy ra \(P , N , Q\) thẳng hàng.

c) Để tứ giác \(A B C D\) là hình vuông thì ta cần \(A B ⊥ B C , A B = B C\) hay \(\Delta A B C\) vuông cân tại \(B .\)

a) Ta có \(A D = B C\) suy ra \(\frac{A D}{2} = \frac{B C}{2}\) nên \(M C = N D\) và \(M C\) // \(N D\)

Do đó, \(M C D N\) là hình bình hành.

Lại có \(C D = A B = \frac{A D}{2} = N D\) nên \(M C D N\) là hình thoi

b) \(B M\) // \(A D\) suy ra \(A B M D\) là hình thang.

Mà \(\hat{A D C} = 120^{\circ}\) mà \(D M\) là phân giác \(\hat{A D C}\) nên \(\hat{A D M} = 60^{\circ} = \hat{B A D}\).

Vậy \(A B M D\) là hình thang cân.

c) \(\Delta K A D\) có \(\hat{K A D} = \hat{K D A}\) nên là tam giác cân.

Xét \(\Delta M B K\) và \(\Delta M C D\) có:

     \(M B = M C\) (giả thiết)

     \(\hat{M_{1}} = \hat{M_{2}}\) (đối đỉnh)

     \(\hat{B_{1}} = \hat{C}\) (so le trong)

Vậy \(\Delta M B K = \Delta M C D\) (g.c.g) suy ra \(M K = M D\) (hai cạnh tương ứng).

Khi đó \(A M\) là đường trung tuyến và \(B K = C D\) (hai cạnh tương ứng)

Mà \(C D = A B\) suy ra \(A B = B K\) hay \(D B\) là đường trung tuyến.

Khi đó, \(\Delta K A D\) có ba đường trung tuyến \(A M , B D , K N\) đồng quy.

Cho hình vuông \(A B C D .\) \(O\) là giao điểm của hai đường chéo. Hai đường thẳng \(m , n\) vuông góc với nhau tại \(O\). Đường thẳng \(m\) cắt \(A B , C D\) lần lượt tại \(P , Q .\) Đường thẳng \(n\) cắt \(B C , A D\) lần lượt ở \(R , S .\)

a) Chứng minh \(\Delta A O P = \Delta B O R .\)

b) Chứng minh \(O P = O R = O S = O Q .\)

c) Chứng minh \(P R Q S\) là hình vuông.

Hướng dẫn giải:

a) Ta có \(\hat{O_{1}} + \hat{O_{3}} = 90^{\circ}\) và \(\hat{O_{2}} + \hat{O_{3}} = 90^{\circ}\) suy ra \(\hat{O_{1}} = \hat{O_{2}}\).

Mặt khác \(\hat{A_{1}} = \hat{B_{1}} = 45^{\circ}\).

Xét \(\Delta A O P\) và \(\Delta B O R\) có

    \(O A = O B\) ( giả thiết)

    \(\hat{A_{1}} = \hat{B_{1}} = 4 5^{\circ}\)

    \(\hat{O_{1}} = \hat{O_{2}}\) (chứng minh trên)

Suy ra \(\Delta A O P = \Delta B O R\) (g.c.g)

b) Từ \(\Delta A O P = \Delta B O R\) suy ra \(O P = O R\) (hai cạnh tương ứng)

Chứng minh tương tự cho \(\Delta O B R = \Delta O C Q\) và \(\Delta O C Q = \Delta O D S\)

Suy ra \(O R = O Q\) và \(O Q = O S\).

Khi đó \(O P = O R = O S = O Q .\)

c) Tứ giác \(P R Q S\) là hình thoi vì có bốn cạnh bằng nhau.

Mà \(\Delta O P R\) có \(O P = O R\) và \(\hat{P O R} = 90^{\circ}\) nên \(\Delta O P R\) là tam giác vuông cân tại \(O\)

Suy ra \(\hat{P_{1}} = 45^{\circ}\).

Tương tự \(\hat{P_{2}} = 45^{\circ}\) nên \(\hat{R P S} = \hat{P_{1}} + \hat{P_{2}} = 90^{\circ}\).

Hình thoi \(P R Q S\) có \(\hat{R P S} = 90^{\circ}\) nên nó là hình vuông.

Cho \(\Delta D E F\) vuông tại \(D\) có \(D E > D F .\) \(D M\) là đường trung tuyến. Gọi \(M N\) là đường vuông góc kẻ từ \(M\) đến \(D E\)\(M K\) là đường vuông góc kẻ từ \(M\) đến \(D F .\) Trên tia \(M N\) lấy \(H\) sao cho \(N\) là trung điểm của \(M H .\)

a) Tứ giác \(D K M N\) là hình gì? Tại sao?

b) Gọi \(O\) là trung điểm của \(D M .\) Chứng minh \(3\) điểm \(H , O , F\) thẳng hàng.

c) \(\Delta D E F\) cần thêm điều kiện gì để tứ giác \(D K M N\) là hình vuông.

Hướng dẫn giải:

a) Tứ giác \(D K M N\) có \(\hat{D} = \hat{K} = \hat{N} = 90^{\circ}\) nên là hình chữ nhật.

b) Vì \(D K M N\) là hình chữ nhật nên \(D F\) // \(M H\)

Xét \(\Delta K F M\) và \(\Delta N M E\) có:

     \(\hat{K} = \hat{N} = 90^{\circ}\)

     \(F M = M E\) ( giả thiết)

     \(\hat{K M F} = \hat{E}\) (đồng vị)

Vậy \(\Delta K F M = \Delta N M E\) (cạnh huyền - góc nhọn)

Suy ra \(K F = M N\) (hai cạnh tương ứng) mà \(M N = D K\) nên \(D F = 2 D K\) và \(M H = 2 M N\).

Do đó \(D F = M H\).

Tứ giác \(D F M H\) có \(D F\) // \(M H , D F = M H\) nên là hình bình hành.

Do đó, hai đường chéo \(D M , F H\) cắt nhau tại trung điểm \(O\) của mỗi đường hay \(F , O , H\) thẳng hàng.

c) Để hình chữ nhật \(D K M N\) là hình vuông thì \(D K = D N\) \(\left(\right. 1 \left.\right)\)

Mà \(D K = \frac{1}{2} D F\) và \(D N = K M = N E\) nên \(D N = \frac{1}{2} D E\) \(\left(\right. 2 \left.\right)\)

Từ \(\left(\right. 1 \left.\right) , \left(\right. 2 \left.\right)\) suy ra \(D F = D E\).

Vậy \(\Delta D F E\) cần thêm điều kiên cân tại \(D\).

Cho hình chữ nhật \(A B C D\) có \(A B = 2 B C .\) Gọi \(I\) là trung điểm của \(A B\) và \(K\) là trung điểm của \(D C .\)

a) Chứng minh \(A I K D\) và \(B I K C\) là hình vuông.

b) Chứng minh \(\Delta D I C\) vuông cân.

c) Gọi \(S\) và \(R\) lần lượt là tâm các hình vuông \(A I K D ,\) \(B I K C .\) Chứng minh \(\left[\right. I S K R\) là hình vuông.

Hướng dẫn giải:

a) Vì \(A B = 2 B C\) suy ra \(B C = \frac{A B}{2} = A D\)

\(A B C D\) là hình chữ nhật nên \(A B = D C\) suy ra \(\frac{1}{2} A B = \frac{1}{2} D C\) do đó \(A I = D K = A D\).

Tứ giác \(A I K D\) có \(A I\) // \(D K , A I = D K\) nên \(A I K D\) là hình bình hành.

Lại có \(A D = A I\) nên \(A I K D\) là hình thoi.

Mà \(\hat{I A D} = 90^{\circ}\) do đó \(A I K D\) là hình vuông.

Chứng minh tương tự cho tứ giác \(B I K C\)

b) Vì \(A I K D\) là hình vuông nên \(D I\) là tia phân giác \(\hat{A D K}\) hay \(\hat{I D K} = 45^{\circ}\).

Tương tự \(\hat{I C D} = 45^{\circ}\).

\(\Delta I D C\) cân có \(\hat{D I C} = 90^{\circ}\) nên là tam giác vuông cân.

c) Vì \(A I K D , B C K I\) là các hình vuông nên hai đường chéo bằng nhau và cắt nhau tại trung điểm của mỗi đường nên \(S I = S K = \frac{D I}{2}\) và \(I R = R K = \frac{I C}{2}\)

Suy ra \(I S K R\) là hình thoi.

Lại có \(\hat{D I C} = 90^{\circ}\) nên \(I S K R\) là hình vuông.