

Tô Hoàng Nghiêm
Giới thiệu về bản thân



































a) A(x)=2x3−x2+3x−5B(x)=2x3+x2+x+5A(x)+B(x)=(2x3−x2+3x−5)+(2x3+x2+x+5)=4x3+4x.
\(& \&\text{nbsp};\text{b})\&\text{nbsp};\text{Ta}\&\text{nbsp};\text{c} \overset{ˊ}{\text{o}} :\&\text{nbsp}; H \left(\right. x \left.\right) = A \left(\right. x \left.\right) + B \left(\right. x \left.\right) \\ & \begin{matrix} & \Rightarrow H \left(\right. x \left.\right) = 4 x^{3} + 4 x \\ & H \left(\right. x \left.\right) = 0 \Rightarrow 4 x^{3} + 4 x = 0 \\ & 4 x \left(\right. x^{2} + 1 \left.\right) = 0 \\ & \Rightarrow 4 x = 0 \left(\right. \&\text{nbsp};\text{do}\&\text{nbsp}; x^{2} + 1 > 0 \&\text{nbsp};\text{v}ớ\text{i}\&\text{nbsp};\text{m}ọ\text{i}\&\text{nbsp}; x \left.\right) \\ & x = 0.\end{matrix}\)
Vậy nghiệm của \(H \left(\right. x \left.\right)\) là \(x = 0\)
Gọi số sách lớp 7A; 7B quyên góp được lần lượt là \(x , y\) ( ĐK: \(x , y \in \&\text{nbsp}; N^{*}\))
Theo đề bài:
+) Lớp 7A và 7B quyên góp được \(121\) quyển sách
Nên ta có: \(x + y = 121\)
+) Số sách giáo khoa của lớp 6A; lớp 6B tỉ lệ thuận với tỉ lệ thuận với 5; 6
Nên ta có: \(\frac{x}{5} = \frac{y}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có \(\frac{x}{5} = \frac{y}{6} = \frac{x + y}{5 + 6} = \frac{121}{11} = 11\)
Suy ra: x=55, y= 66 ( thỏa mãn).
Vậy lớp 6A quyên góp được \(55\) quyển sách, lớp 6B quyên góp được \(66\) cuốn
Tại \(x = 9\) thì:
\(C = x^{14} - 10 x^{13} + 10 x^{12} - 10 x^{11} + . . . + 10 x^{2} - 10 x + 10\)
\(C = x^{14} - \left(\right. x + 1 \left.\right) x^{13} + \left(\right. x + 1 \left.\right) x^{12} - \left(\right. x + 1 \left.\right) x^{11} + . . . + \left(\right. x + 1 \left.\right) x^{2} - \left(\right. x + 1 \left.\right) x + x + 1\)
\(C = x^{14} - x^{14} - x^{13} + x^{13} + x^{12} - x^{12} - x^{11} + . . . + x^{3} + x^{2} - x^{2} - x + x + 1\)
\(C = 1\).
Vậy tại \(x = 9\) thì giá trị của \(C\) bằng \(1\).
a) Xét \(\Delta A H B\) và \(\Delta A H C\) có:
\(A B = A C\) (gt);
\(A H\) chung;
\(H B = H C\) (\(H\) là trung điểm của \(B C\));
Suy ra \(\Delta A H B = \Delta A H C\) (c.c.c).
b) Vì \(\Delta A H B = \Delta A H C\) (cmt) suy ra \(\hat{A H B} = \hat{A H C}\) (cặp góc tương ứng).
Mà \(\hat{A H B} + \hat{A H C} = 18 0^{\circ}\) (hai góc kề bù).
Suy ra \(\hat{A H B} = \hat{A H C} = 9 0^{\circ}\).
Vậy \(A H \bot B C\).
c) Vi \(\Delta A H B = \Delta A H C\) (cmt) suy ra \(\hat{H A B} = \hat{H A C} = 4 5^{\circ}\);
\(\hat{H C A} = \hat{H B A} = \frac{18 0^{\circ} - \hat{B A C}}{2} = 4 5^{\circ}\) (cặp góc tương ứng).
Xét \(\Delta E B A\) và \(\Delta B F C\) có:
\(A B = C F\) (gt);
\(\hat{B A E} = \hat{B C F}\) (cùng bù với \(\hat{H A B} = \hat{H C A} = 4 5^{\circ}\));
\(E A = B C\) (gt);
Suy ra \(\Delta E B A = \Delta B F C\) (c.g.c).
Vậy \(B E = B F\) (cặp cạnh tương ứng).
a) Biến cố \(A\) là biến cố ngẫu nhiên, biến cố \(B\) là biến cố chắc chắn, biến cố \(C\) là biến cố không thể.
b) Xác suất của biến cố \(A\) là: \(\frac{3}{6} = \frac{1}{2}\).
1) Số tiền bác Mai phải trả khi mua \(5\) chai dung dịch sát khuẩn là:
\(5.80 000 = 400 000\) (đồng)
Số tiền bác Mai phải trả khi mua \(3\) hộp khẩu trang là: \(3. x\) (đồng)
Đa thức \(F \left(\right. x \left.\right)\) biểu thị tổng số tiền bác Mai phải thanh toán là: \(400 000 + 3 x\) (đồng)
2)
a) Ta có: \(A \left(\right. x \left.\right) = 2 x^{2} - 3 x + 5 + 4 x - 2 x^{2} = \left(\right. 2 x^{2} - 2 x^{2} \left.\right) + \left(\right. - 3 x + 4 x \left.\right) + 5 = x + 5\)
Bậc: \(1\); hệ số cao nhất: \(1\); hệ số tự do: \(5\).
b) Ta có: \(C \left(\right. x \left.\right) = \left(\right. x - 1 \left.\right) . A \left(\right. x \left.\right) + B \left(\right. x \left.\right) = \left(\right. x - 1 \left.\right) \left(\right. x + 5 \left.\right) + \left(\right. x^{2} - 2 x + 5 \left.\right) = x^{2} + 4 x - 5 + x^{2} - 2 x + 5\) \(= \left(\right. x^{2} + x^{2} \left.\right) + \left(\right. 4 x - 2 x \left.\right) + \left(\right. - 5 + 5 \left.\right) = 2 x^{2} + 2 x\).
a)1/3
b)1
c)-6