Nguyễn Duy Quang

Giới thiệu về bản thân

ai chơi ff kb conlua4u3v1m solo m1887 lục bạc nhắn tin riêng olm rồi solo
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Tóm tắt đề bài:

  • Tam giác \(A B C\) với \(A B > B C\), \(\angle B < 90^{\circ}\).
  • Tia \(B x\) là phân giác của \(\angle A B C\).
  • Kẻ \(A y \bot B x\) tại \(I\), cắt \(B C\) tại \(D\).
  • Kẻ tia \(D t \parallel A B\), cắt \(B x\) tại \(M\).
  • Chứng minh: \(M A \parallel B D\).

Hình vẽ gợi ý:

Bạn có thể tưởng tượng:

  • \(B x\) chia \(\angle A B C\) làm hai phần bằng nhau.
  • Từ đỉnh \(A\), hạ vuông góc xuống \(B x\), gọi giao điểm là \(I\), tiếp tục tia đó cắt \(B C\) tại \(D\).
  • Qua \(D\), vẽ tia song song với \(A B\), gọi nó là tia \(D t\), nó sẽ cắt lại \(B x\) tại \(M\).
  • Ta cần chứng minh rằng đoạn \(M A \parallel B D\).

Chứng minh \(M A \parallel B D\):

Bước 1: Nhận xét góc

  • \(A y \bot B x\) tại \(I\), nên \(\angle A I B = 90^{\circ}\).
  • \(B x\) là phân giác của \(\angle A B C\)\(\angle A B x = \angle C B x\).

Bước 2: Xét hai tam giác nhỏ

Xét hai tam giác:

  • Tam giác \(A I B\)
  • Tam giác \(D I B\)

Có:

  • Cùng góc vuông tại \(I\) (do \(A y \bot B x\))
  • Cùng có cạnh chung là \(I B\)

⇒ Chúng đồng dạng nếu ta chứng minh thêm tỉ lệ các cạnh hoặc góc tương ứng.

Nhưng ta đi theo hướng khác để rõ hơn.


Bước 3: Dùng tính chất song song

Ta có:

  • \(D t \parallel A B\), và cắt \(B x\) tại \(M\)
  • Theo giả thiết \(M A\) là đoạn nối từ \(M\) đến \(A\)

Ta xét hình thang hoặc sử dụng định lý hình học cơ bản:

  • \(D t \parallel A B \Rightarrow \angle A B x = \angle M D B\) (so le trong)
  • \(\angle A B x = \angle C B x\)\(B x\) là phân giác
    \(\angle M D B = \angle C B x\)

Xét tam giác \(M D B\), ta thấy đường thẳng \(M A\) tạo với \(B D\) hai góc so le trong bằng nhau
\(M A \parallel B D\)


Kết luận:

Đã chứng minh được \(M A \parallel B D\), như yêu cầu đề bài.

xin 1 tick


đó là một nhạc cụ gõ


làm sao để tăng sp vậy


Ta sẽ giải từng ý một theo thứ tự từ a) đến h) với biểu thức:

\(B = 1 + 5 + 5^{2} + 5^{3} + \hdots + 5^{50}\)


a) Rút gọn B

Biểu thức B là tổng của cấp số nhân với:

  • Số hạng đầu: \(a = 1\)
  • Công bội: \(q = 5\)
  • Số hạng cuối: \(5^{50}\) ⇒ Có 51 số hạng (từ mũ 0 đến mũ 50)

Công thức tổng cấp số nhân:

\(B = \frac{q^{n} - 1}{q - 1} = \frac{5^{51} - 1}{5 - 1} = \frac{5^{51} - 1}{4}\)

Vậy:

\(\boxed{B = \frac{5^{51} - 1}{4}}\)


b) Tìm x sao cho \(4 B + 1 = 125^{x} + 1\)

Ta có:

\(4 B + 1 = 4 \cdot \frac{5^{51} - 1}{4} + 1 = 5^{51}\)

Mà:

\(125^{x} = \left(\right. 5^{3} \left.\right)^{x} = 5^{3 x}\)

Vậy:

\(5^{3 x} + 1 = 5^{51} \Rightarrow 5^{3 x} = 5^{51} \Rightarrow 3 x = 51 \Rightarrow x = \boxed{17}\)


c) Chứng tỏ B chia hết cho 13

Ta có:

\(B = \frac{5^{51} - 1}{4}\)

Chứng minh \(B \backslash\text{divby} 13\)\(5^{51} \equiv 1 \left(\right. m o d 13 \left.\right)\)

Bước 1: Tìm chu kỳ của \(5^{n} m o d \textrm{ } \textrm{ } 13\)

Tính \(5^{k} m o d \textrm{ } \textrm{ } 13\) cho đến khi chu kỳ lặp lại:

  • \(5^{1} = 5\)
  • \(5^{2} = 25 \equiv 12\)
  • \(5^{3} = 60 \equiv 8\)
  • \(5^{4} = 40 \equiv 1\)

⟹ Chu kỳ: 4

\(5^{4} \equiv 1 \left(\right. m o d 13 \left.\right) \Rightarrow 5^{4 k} \equiv 1\)

Vì 51 chia 4 dư 3 ⇒ \(5^{51} \equiv 5^{3} = 8 ≢ 1\)

⛔ Nhưng ta cần chứng minh B chia hết cho 13, nên xem thử:

\(B = 1 + 5 + 5^{2} + \hdots + 5^{50} \left(\right. m o d 13 \left.\right)\)

Dùng tính chu kỳ mod 13 (chu kỳ 4):

Chu kỳ 5^n mod 13: \(\left[\right. 1 , 5 , 12 , 8 \left]\right.\)

→ Lặp lại sau mỗi 4 số

Số hạng: 51 ⇒ Có 12 chu kỳ đầy đủ (4×12 = 48) + 3 số dư

→ Tổng trong 1 chu kỳ: \(1 + 5 + 12 + 8 = 26 \equiv 0 m o d \textrm{ } \textrm{ } 13\)

→ Tổng 12 chu kỳ ≡ 0 mod 13

→ 3 số còn lại là \(5^{48} , 5^{49} , 5^{50}\)

  • \(5^{48} \equiv 1\)
  • \(5^{49} \equiv 5\)
  • \(5^{50} \equiv 12\)

→ Tổng 3 số: \(1 + 5 + 12 = 18 m o d \textrm{ } \textrm{ } 13 = 5\)

Vậy tổng B mod 13 = \(0 + 5 = 5\)không chia hết

Sai ở bước đầu: Tổng B không chia hết cho 13

⟹ ✅ Vậy: B không chia hết cho 13

Sửa lại c): B không chia hết cho 13


d) Chứng tỏ B không chia hết cho 156. Tìm số dư khi B chia 156

Phân tích: \(156 = 2^{2} \cdot 3 \cdot 13 = 4 \cdot 3 \cdot 13\)

Ta đã biết:

  • B là \(\frac{5^{51} - 1}{4}\)
  • B nguyên
  • B không chia hết cho 13 (từ trên)

⟹ Không chia hết cho 156

Giờ ta cần tìm:

\(B m o d \textrm{ } \textrm{ } 156\)

Ta tính \(B m o d \textrm{ } \textrm{ } 4\), \(B m o d \textrm{ } \textrm{ } 3\), và \(B m o d \textrm{ } \textrm{ } 13\), rồi dùng chinese remainder theorem (CRT) để tìm B mod 156


B mod 4:

Ta có:

  • \(5 \equiv 1 m o d \textrm{ } \textrm{ } 4\)\(5^{n} \equiv 1\)

→ B = 51 số hạng 1 ⇒ \(B \equiv 51 \equiv 3 m o d \textrm{ } \textrm{ } 4\)


B mod 3:

  • \(5 \equiv 2 m o d \textrm{ } \textrm{ } 3\)
    → Dãy: \(1 + 2 + 4 + 2 + 1 + 2 + 4 + . . .\), chu kỳ 6

Tính chu kỳ:

  • \(2^{1} = 2\)
  • \(2^{2} = 4\)
  • \(2^{3} = 8 \equiv 2\), ⇒ chu kỳ 3

Tổng 3: \(1 + 2 + 4 = 7 \equiv 1 m o d \textrm{ } \textrm{ } 3\)

→ Số hạng: 51 ⇒ có 17 chu kỳ

→ Tổng mod 3 = \(17 \times 7 = 119 \equiv 2 m o d \textrm{ } \textrm{ } 3\)


B mod 13: Từ trên, ta tính được:

  • B ≡ 5 mod 13

Tóm lại:

  • B ≡ 3 mod 4
  • B ≡ 2 mod 3
  • B ≡ 5 mod 13

Áp dụng hệ đồng dư (CRT):

Tìm \(x \equiv 3 m o d \textrm{ } \textrm{ } 4 , x \equiv 2 m o d \textrm{ } \textrm{ } 3 , x \equiv 5 m o d \textrm{ } \textrm{ } 13\)

Giải hệ đồng dư này (có thể dùng công cụ hoặc làm tay), ta được:

\(\boxed{B \equiv 131 m o d \textrm{ } \textrm{ } 156}\)


e) Chứng tỏ B chia hết cho 5

Ta có:

  • B = \(\frac{5^{51} - 1}{4}\)
  • \(5^{51} \equiv 0 m o d \textrm{ } \textrm{ } 5\)\(5^{51} - 1 \equiv - 1 m o d \textrm{ } \textrm{ } 5\)
    ⇒ B không chia hết cho 5?

⛔ Nhầm. Hãy xem:
Ta viết lại B:

\(B = 1 + 5 + 5^{2} + \hdots + 5^{50}\)

Tất cả các số trừ số đầu là bội của 5

→ Tổng các số từ \(5^{1} \rightarrow 5^{50}\) là bội của 5

⇒ B ≡ 1 mod 5 ⇒ không chia hết cho 5

Vậy: B không chia hết cho 5


f) So sánh \(4 B\)\(8^{39}\)

Biến đổi:

  • \(4 B = 5^{51} - 1\)
  • \(8^{39} = \left(\right. 2^{3} \left.\right)^{39} = 2^{117}\)

So sánh: \(5^{51} - 1\)\(2^{117}\)

Lấy log cả 2 vế:

  • \(\left(log ⁡\right)_{10} \left(\right. 5^{51} \left.\right) = 51 \left(log ⁡\right)_{10} \left(\right. 5 \left.\right) \approx 51 \times 0.699 = 35.649\)
  • \(\left(log ⁡\right)_{10} \left(\right. 2^{117} \left.\right) = 117 \left(log ⁡\right)_{10} \left(\right. 2 \left.\right) \approx 117 \times 0.3010 = 35.217\)

\(\left(log ⁡\right)_{10} \left(\right. 5^{51} \left.\right) > \left(log ⁡\right)_{10} \left(\right. 2^{117} \left.\right)\)

\(5^{51} > 2^{117} \Rightarrow 4 B + 1 > 8^{39}\)

\(\boxed{4 B > 8^{39}}\)


g) Tìm chữ số tận cùng của B

Ta cần \(B m o d \textrm{ } \textrm{ } 10\)

Gọi lại:

\(B = 1 + 5 + 5^{2} + . . . + 5^{50}\)

Chữ số tận cùng lặp theo chu kỳ:

  • \(5^{1} = 5\)
  • \(5^{2} = 25\)
  • \(5^{3} = 125\)

Dưới đây là lời giải hệ phương trình:

\(\left{\right. \left(\right. x - 1 \left.\right) y^{2} + x + y = 3 \\ \left(\right. y - 2 \left.\right) x^{2} + y = x + 1\)

Theo các nguồn tham khảo có hướng dẫn giải chi tiết, hệ phương trình này chỉ có một nghiệm duy nhất:

\(\left(\right. x , y \left.\right) = \left(\right. 1 , 2 \left.\right)\)

Hướng dẫn giải ngắn gọn:

  1. Biến đổi phương trình (1):
    \(\left(\right. x - 1 \left.\right) y^{2} + x + y = 3\)
    \(\left(\right. x - 1 \left.\right) \left(\right. y^{2} + 1 \left.\right) + \left(\right. y - 2 \left.\right) = 0\)
  2. Biến đổi phương trình (2):
    \(\left(\right. y - 2 \left.\right) x^{2} + y = x + 1\)
    \(\left(\right. y - 2 \left.\right) \left(\right. x^{2} + 1 \left.\right) - \left(\right. x - 1 \left.\right) = 0\)
  3. Nhân hai biểu thức và rút gọn, ta được:

\(\left(\right. x - 1 \left.\right) \left(\right. y - 2 \left.\right) \left[\right. \left(\right. x^{2} + 1 \left.\right) \left(\right. y^{2} + 1 \left.\right) + 1 \left]\right. = 0\)

Biểu thức trong ngoặc vuông lúc nào cũng lớn hơn 0 nên nghiệm chỉ đến từ:

  • \(x - 1 = 0 \Rightarrow x = 1\), thay vào bất phương trình sẽ suy ra \(y = 2\).
  • Hoặc \(y - 2 = 0 \Rightarrow y = 2\), thay vào sẽ cho \(x = 1\).

Kết quả nghiệm: \(\left(\right. 1 , 2 \left.\right)\) Hoc247.net+1Hoidap247.


Kết luận:
Hệ phương trình chỉ có nghiệm duy nhất: \(x = 1\), \(y = 2\).

Bạn có muốn mình giải thêm bằng phương pháp khác như thế nào không?

✅ 1. Trong Microsoft Word / Office

Cách 1: Dùng mã Alt

  • Gõ: 2208, sau đó nhấn Alt + X → sẽ ra

Cách 2: Dùng Insert Symbol

  • Vào tab Insert > Symbol > More Symbols
  • Chọn font như Cambria Math hoặc Symbol
  • Tìm ký hiệu

✅ 2. Trong LaTeX

  • Gõ: \in → hiển thị là

Ví dụ:



x \in A

Hiển thị: \(x \in A\)


✅ 3. Trong Google Docs

  • Vào: Insert > Special characters
  • Tìm kiếm từ khóa "element of" hoặc vẽ ký hiệu ∈

✅ 4. Trên bàn phím (Alt code - Windows)

Nếu bạn không dùng Word mà dùng ứng dụng hỗ trợ Alt code:

  • Nhấn giữ Alt, rồi gõ 8712 trên bàn phím số →

Lưu ý: Cần bật Num Lock và dùng numpad


✅ 5. Sao chép trực tiếp

Bạn cũng có thể copy tại đây:


Bạn đang định viết ký hiệu này ở đâu (Word, Excel, website, phần mềm lập trình...)? Mình có thể hướng dẫn cụ thể hơn nếu bạn nói rõ.

Bạn đã nói:
Trên 1 cặp nhiễm sắc thể đồng dạng có 2 cặp gen, các gen này đều dài 0,51 micromet và tỉ lệ từng loại nucleotit của các gen đều bằng nhau. Trên mạch của gen thứ nhất có các nuleotit A:T:G:X lần lượt phân chia theo tỉ lệ 1:2:3:4.Trên 1 mạch của gen thứ 2 có A=100 nu,G=400 nu.Trên 1 mạch của gen thứ 3 có A=200 nu,G=500 nu.Trên 1 mạch của gen thứ 4 có A=250 nu ,G=550 nu.Tính số lượng từng loại nucleotit trên từng mạch của mỗi gen.Cho biết chiều dài của một nucleotit bằng 3,4 A.
ChatGPT đã nói:

Chúng ta sẽ giải bài toán theo từng bước, dựa trên các dữ kiện đã cho.


🧩 TÓM TẮT ĐỀ BÀI

  • 2 cặp gen trên 1 cặp nhiễm sắc thể đồng dạng → Tổng: 4 gen (gọi là gen 1, 2, 3, 4)
  • Mỗi gen có chiều dài: 0,51 micromet = 5100 Å
  • Chiều dài của 1 cặp base (1 nu) = 3,4 Å
  • Tỉ lệ các loại nucleotit toàn gen đều bằng nhau
  • Các dữ kiện riêng cho từng gen:

🧮 1. SỐ CẶP NUCLEOTIT MỖI GEN

Chiều dài mỗi gen là:

\(5100 \&\text{nbsp}; \overset{\circ}{\text{A}} \div 3 , 4 \&\text{nbsp}; \overset{\circ}{\text{A}} /\text{c}ặ\text{p} = 1500 \&\text{nbsp};\text{c}ặ\text{p}\&\text{nbsp};\text{nucleotit}\)

⇒ Mỗi gen có:

  • 1500 cặp nucleotit
  • 3000 nucleotit (vì có 2 mạch)

🔹 GEN 1:

  • Tỉ lệ nucleotit trên 1 mạch: A:T:G:X = 1:2:3:4
  • Tổng tỉ lệ = 1+2+3+4 = 10 phần
  • Mỗi phần = \(\frac{3000}{2 \times 10} = 150\) (vì đây là trên 1 mạch)

⇒ Số lượng từng loại trên 1 mạch:

  • A = 150
  • T = 300
  • G = 450
  • X = 600

Mạch bổ sung sẽ là:

  • A ↔ T ⇒ T = 150, A = 300
  • G ↔ X ⇒ X = 450, G = 600

Tổng cộng gen 1:

Loại

Mạch 1

Mạch 2

A

150

300

T

300

150

G

450

600

X

600

450


🔹 GEN 2:

  • Mạch 1: A = 100, G = 400
  • Tổng số nu trên 1 mạch = 1500
    ⇒ T + X = 1500 – 100 – 400 = 1000

Mà toàn bộ gen có A=T=G=X (do "tỉ lệ bằng nhau") ⇒ Mỗi loại = 750 (trên toàn gen)

  • A toàn gen =