Nguyễn Hoàng Minh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Hoàng Minh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a. Ta có: \(3 x - 4 = 5 + x\)

\(3 x - x = 5 + 4\)

\(2 x = 9\)

\(x = \frac{9}{2}\).

Vậy phương trình đã cho có nghiệm \(x = \frac{9}{2}\).

b. Ta có: \(3 \left(\right. x - 1 \left.\right) - 7 = 5 \left(\right. x + 2 \left.\right)\)

\(3 x - 3 - 7 = 5 x + 10\)

\(5 x - 3 x = - 3 - 7 - 10\)

\(2 x = - 20\)

\(x = - 10\).

Vậy phương trình có nghiệm \(x = - 10\).

Xét \(\Delta A B C\)\(A B = 10\) cm, \(A C = 17\) cm, \(B C = 21\) cm.

Gọi \(A H\) là đường cao của tam giác.
\(B C\) là cạnh lớn nhất của tam giác nên \(\hat{B} , \hat{C} < 9 0^{\circ}\),C

<90∘, do đó \(H\) nằm giữa \(B\)\(C\).

Đặt \(H C = x , H B = y\), ta có : \(x + y = 21\) (1)

Mặt khác \(\left(A H\right)^{2} = 1 0^{2} - y^{2} , \left(A H\right)^{2} = 1 7^{2} - x^{2}\) nên \(x^{2} - y^{2} = 1 7^{2} - 1 0^{2} = 289 - 100 = 189\) (2)

Từ (1) và (2) suy ra \(x + y = 21\), \(x - y = 9\).

Do đó \(x = 15\), \(y = 6\).

Ta có \(\left(A H\right)^{2} = 1 0^{2} - 6^{2} = 64\) nên \(A H = 8\).

Vậy \(S_{A B C} = \frac{21.8}{2} = 84\) (cm\(^{2}\)).

a) Vì tam giác \(K B C\) vuông tại \(K\) suy ra \(\hat{K B H} = 9 0^{\circ}\)

=90∘

\(C I \bot B I\) (gt) suy ra \(\hat{C l H} = 9 0^{\circ}\)

=90∘

Xét \(\triangle K B H\)\(\triangle C H I\) có:

\(\hat{K B H} = \hat{C I H} = 9 0^{\circ}\)

=CIH

=90∘;

\(\hat{B H K} = \hat{C H I}\)

=CHI

(đối đỉnh)

Suy ra \(\Delta B H K \sim \Delta C H I\) (g.g)

b) Ta có \(\Delta B H K \sim \Delta C H I\) suy ra \(\hat{H B K} = \hat{H C I}\)


(hai góc tương ứng) 

\(B H\) là tia phân giác của \(\hat{A B C}\)

nên \(\hat{H B K} = \hat{H B C}\)=HBC

.

Do đó \(\hat{H B C} = \hat{H C I}\)


.

Xét \(\triangle C I B\)\(\triangle H I C\) có:

\(\hat{C I B}\)

chung;

\(\hat{I B C} = \hat{H C I}\)


(cmt)

Vậy \(\Delta C I B \approx \Delta H I C\) (g.g) suy ra \(\frac{C I}{H I} = \frac{I B}{I C}\)

Hay \(\left(C I\right)^{2} = H I . I B\)

c) Xét \(\triangle A B C\)\(B I \bot A C\); \(C K \bot A B\); \(B I \cap C K = \left{\right. H \left.\right}\)

Nên \(H\) là trực tâm \(\triangle A B C\) suy ra \(A H \bot B C\) tại \(D\).

Từ đó ta có \(\triangle B K C \sim \triangle H D C\) (g.g) nên \(\frac{C B}{C H} = \frac{C K}{C D}\)

Suy ra \(\frac{C B}{C K} = \frac{C H}{C D}\) nên \(\triangle B H C \sim \triangle K D C\) (c.g.c)

Khi đó \(\hat{H B C} = \hat{D K C}\)


(hai góc tương ứng)

Chứng minh tương tự \(\hat{H A C} = \hat{I K C}\)

\(\hat{H A C} = \hat{H B C}\)=HBC (cùng phụ \(\hat{A C B}\)

)

Suy ra \(\&\text{nbsp}; \hat{D K C} = \hat{I K C}\)


.

Vậy \(K C\) là tia phân giác của \(\hat{I K D}\)

.

a) Xét đường thẳng: \(\left(\right. d_{1} \left.\right) : y = - 3 x\).

Nếu \(x = 0\) thì \(y = 0\) suy ra \(\left(\right. d_{1} \left.\right)\) đi qua điểm có tọa độ \(\left(\right. 0 ; 0 \left.\right)\)

Nếu \(x = 1\) thì \(y = - 3\) suy ra \(\left(\right. d_{1} \left.\right)\) đi qua điểm có tọa độ \(\left(\right. 1 ; - 3 \left.\right)\)

b) Vì \(\left(\right. d_{3} \left.\right) : y = a x + b\) song song với \(\left(\right. d_{2} \left.\right) : y = x + 2\) nên \(a = 1 , b \neq 2\).

Khi đó đường thẳng \(\left(\right. d_{3} \left.\right)\) có dạng \(y = x + b\) với \(b \neq 2\).

Vì \(\left(\right. d_{3} \left.\right)\) đi qua điểm có tọa độ \(A \left(\right. - 1 ; 3 \left.\right)\) nên: \(3 = - 1 + b\) hay \(b = 3 + 1 = 4\) (thỏa mãn).

Vậy đường thẳng \(\left(\right. d_{3} \left.\right)\)\(\left(\right. d_{3} \left.\right) : y = - x + 4\).

2) Gọi số sản phẩm mà tổ I làm được theo kế hoạch là \(x\).

Điều kiện: \(x \in \mathbb{N}^{*}\); \(x < 900\), đơn vị: sản phẩm.

Số sản phẩm mà tổ II làm được theo kế hoạch là: \(900 - x\) (sản phẩm).

Theo bài ra, do cải tiến kĩ thuật nên tổ một vượt mức \(20 \%\) và tổ hai vượt mức \(15 \%\) so với kế hoạch.

Số sản phẩm mà tổ I làm được theo thực tế là: \(x + x . \&\text{nbsp}; 20 \% = x + 0 , 2 x = 1 , 2 x\) (sản phẩm);

Số sản phẩm mà tổ II làm được theo thực tế là: \(900 - x + \left(\right. 900 - x \left.\right) . 15 \% = 1 035 - 1 , 15 x\) (sản phẩm).

Vì thực tế hai tổ đã sản xuất được \(1 055\) sản phẩm nên ta có phương trình: \(1 , 2 x + 1 035 - 1 , 15 x = 1 055\)

Giải phương trình tìm được \(x = 400\) (sản phẩm)

Khi đó, số sản phẩm mà tổ II làm được theo kế hoạch là: \(900 - 400 = 500\) (sản phẩm).

Vậy theo kế hoạch tổ I làm được \(400\) sản phẩm, tổ II làm được \(500\) sản phẩm.

a) \(2 x = 7 + x\)

\(2 x - x = 7\)

\(x = 7\).

Phương trình đã cho có nghiệm \(x = 7\).

b) \(\frac{x - 3}{5} + \frac{1 + 2 x}{3} = 6\)

\(\frac{3 \left(\right. x - 3 \left.\right)}{15} + \frac{5. \left(\right. 1 + 2 x \left.\right)}{15} = 6\)

\(3 x - 9 + 5 + 10 x = 90\)

\(13 x = 94\)

\(x = \frac{94}{13}\).

Phương trình đã cho có nghiệm \(x = \frac{94}{13}\).

a) \(\Delta A I E \sim \Delta A C I\) (g.g) suy ra \(\frac{A I}{A C} = \frac{A E}{A I}\) hay \(A I^{2} = A E . A C\) (1)

Chứng minh tương tự:

\(\Delta A I K \sim \Delta A K B\) (g.g) suy ra \(\frac{A K}{A B} = \frac{A F}{A K}\) hay \(A K^{2} = A B . A F\) (2)

Mà \(\Delta A B E \sim \Delta A C F\) (g.g) suy ra \(\frac{A B}{A C} = \frac{A E}{A F}\) hay \(A B . A F = A C . A E\) (3)

Từ (1), (2) và (3) ta có \(A I^{2} = A K^{2}\) suy ra \(A I = A K\).

b) Vì \(\hat{A} = 60^{\circ}\)

=60∘ suy ra \(\hat{B_{1}} = 30^{\circ}\)

​=30∘

Trong tam giác \(A B E\) vuông tại \(E\) nên \(A E = \frac{1}{2} A B ,\)

Trong tam giác \(A F C\) vuông tại \(F\)\(\hat{C_{1}} = 30^{\circ}\)

​=30∘ suy ra \(A F = \frac{1}{2} A C\).

Do đó, \(\Delta A E F \sim \Delta A B C\) (c.g.c).

suy ra \(\frac{S_{A E F}}{S_{A B C}} = \left(\left(\right. \frac{A E}{A B} \left.\right)\right)^{2} = \frac{1}{4}\).

Vậy \(S_{A E F} = \frac{1}{4} . 120 = 30\) cm\(^{2}\).

Gọi \(B F\) cắt \(D C\) tại \(K\), \(B E\) cắt \(D C\) tại \(I\), và \(E F\) cắt \(A B\) tại \(G\).

\(\Delta F A B\)\(D K\) // \(A B\) suy ra \(\frac{D K}{A B} = \frac{F D}{F A}\) (1)

\(\Delta F A G\)\(D H\) // \(A G\) suy ra \(\frac{D H}{A G} = \frac{F D}{F A}\) (2)

Từ (1) và (2) suy ra \(\frac{D K}{A B} = \frac{D H}{A G}\) hay \(\frac{D K}{D H} = \frac{A B}{A G}\) (*)

Tương tự \(\Delta E I C\)\(A B\) // \(I C\) suy ra \(\frac{I C}{A B} = \frac{E C}{E A}\) (3)

\(\Delta E H C\)\(H C\) // \(A B\) suy ra \(\frac{H C}{A G} = \frac{E C}{E A}\) (4)

Từ (3) và (4) ta có \(\frac{I C}{A B} = \frac{H C}{A G}\) hay \(\frac{I C}{H C} = \frac{A B}{A G}\) (**)

Từ (*) và (**) ta có \(\frac{D K}{D H} = \frac{I C}{H C}\).

\(D H = H C\) (gt) suy ra \(D K = I C\)

Mặt khác \(B D = B C\) (gt) nên \(\Delta B D C\) cân

Suy ra \(\hat{B D K} = \hat{B C I}\)

Vậy \(\Delta B D K = \Delta B C I\) (c.g.c)

Suy ra \(\hat{D B K} = \hat{C B I}\)


a) \(\Delta A B E\)\(A M\) // \(D G\) suy ra \(\frac{A E}{E G} = \frac{E B}{E D}\) (1)

\(\Delta A D E\)\(A D\) // \(B K\) suy ra \(\frac{E B}{E D} = \frac{E K}{E A}\) (2)

Từ (1) và (2) ta có \(\frac{A E}{E G} = \frac{E K}{E A}\) nên \(A E^{2} = E K . E G\).

b) Từ \(\frac{1}{A E} = \frac{1}{A K} + \frac{1}{A G}\) suy ra \(\frac{A E}{A K} + \frac{A E}{A G} = 1\)

\(\Delta A D E\)\(A D\) // \(B C\) suy ra \(\frac{A E}{E K} = \frac{E D}{E B}\)

     \(\frac{A E}{A E + E K} = \frac{E D}{E D + E B}\)

     \(\frac{A E}{A K} = \frac{E D}{D B}\) (3)

Tương tự \(\Delta A E B\)\(A B\) // \(D G\) suy ra \(\frac{A E}{E G} = \frac{B E}{E D}\)

     \(\frac{A E}{A E + E G} = \frac{B E}{B E + E D}\)

     \(\frac{A E}{A G} = \frac{B E}{B D}\) (4)

Khi đó \(\frac{A E}{A K} + \frac{A E}{A G} = \frac{E D}{B D} + \frac{B E}{B D} = 1\).

c) Ta có \(\frac{B K}{K C} = \frac{A B}{C G}\) suy ra \(B K = \frac{K C . A B}{C G}\) (1)
\(\frac{K C}{A D} = \frac{C G}{D G}\).

Suy ra \(D G = \frac{A D . C G}{K C}\) (2)
nhân 2 vế 1 và 2 ta đc DG.BK=AB.AD
mà AB , AD ko đổi nên DG.BK ko đổi

Qua \(A\) vẽ đường thẳng song song với \(B C\) cắt \(B B^{'}\) tại \(D\) và cắt \(C C^{'}\) tại \(E\).

Khi đó 

\(\Delta A M E\)\(A E\) // \(A^{'} C\) suy ra \(\frac{A M}{A^{'} M} = \frac{A E}{A^{'} C}\) (1)

\(\Delta A M D\)\(A D\) // \(A^{'} B\) suy ra \(\frac{A M}{A^{'} M} = \frac{A D}{A^{'} B}\) (2)

Từ (1) và (2) ta có \(\frac{A M}{A^{'} M} = \frac{A E}{A^{'} C} = \frac{A D}{A^{'} B} = \frac{A D + A E}{A^{'} C + A^{'} B} = \frac{D E}{B C}\) (*)

Chứng minh tương tự ta cũng có:

\(\Delta A B^{'} D\)\(A D\) // \(B C\) suy ra \(\frac{A B^{'}}{B^{'} C} = \frac{A D}{B C}\) (3)

\(\Delta A C^{'} E\) có \(A E\) // \(B C\) suy ra \(\frac{A C^{'}}{C^{'} B} = \frac{A E}{B C}\) (4)

Từ (3) và (4) ta có \(\frac{A B^{'}}{B^{'} C} + \frac{A C^{'}}{B C^{'}} = \frac{A D}{B C} + \frac{A E}{B C} = \frac{D E}{B C}\) (2)

Từ (*) và (**) ta có \(\frac{A M}{A^{'} M} = \frac{D E}{B C} = \frac{A B^{'}}{B^{'} C} + \frac{A C^{'}}{B C^{'}}\) (đpcm).