

Nguyễn Long Nhật
Giới thiệu về bản thân



































a) Ta có DM=DG \Rightarrow GM=2 GDDM=DG⇒GM=2GD.
Ta lại có GG là giao điểm của BDBD và CE \Rightarrow GCE⇒G là trọng tâm của tam giác ABCABC
\Rightarrow BG=2 GD⇒BG=2GD.
Suy ra BG=GMBG=GM.
Chứng minh tương tự ta được CG=GNCG=GN.
b) Xét tam giác GMNGMN và tam giác GBCGBC có GM=GBGM=GB (chứng minh trên);
\widehat{MGN}=\widehat{BGC}MGN=BGC (hai góc đối đỉnh);
GN=GCGN=GC (chứng minh trên).
Do đó \triangle GMN=\triangle GBC△GMN=△GBC (c.g.c)
\Rightarrow MN=BC⇒MN=BC (hai cạnh tương ứng).
Theo chứng minh trên \triangle GMN=\triangle GBC \Rightarrow \widehat{NMG}=\widehat{CBG}△GMN=△GBC⇒NMG=CBG (hai góc tương ứng).
Mà \widehat{NMG}NMG và \widehat{CBG}CBG ờ vị trí so le trong nên MNMN // BCBC.
Ta có BF = 2BE (giả thiết). Suy ra BE = EF.
Mà BE = 2ED nên EF = 2ED.
Do đó ED = DF.
Suy ra D là trung điểm của EF.
Khi đó CD là đường trung tuyến của ∆CEF.
Vì K là trung điểm CF (giả thiết).
Nên EK cũng là đường trung tuyến của ∆CEF.
∆CEF có hai đường trung tuyến CD và EK cắt nhau tại G.
Khi đó G là trọng tâm của ∆CEF.
Do đó đáp án A đúng.
Vì G là trọng tâm của ∆CEF nên GCDC=23GCDC=23 và GKGE=12GKGE=12 (tính chất trọng tâm)
Do đó đáp án C đúng.
Ta có GKGE=12GKGE=12
Suy ra GEGK=2GEGK=2.
Giải:
a) D là trung điểm AC nên AD = 1212AC
E là trung điểm AB nên AE = 1212AB.
∆ABC cân tại A nên AB = AC.
Suy ra AE = AD.
Xét ∆ADB và ∆AEC, có:
AB = AC (chứng minh trên);
ˆBACBAC^ là góc chung;
AE = AD (chứng minh trên).
Do đó ∆ADB = ∆AEC (c.g.c).
b) G là trọng tâm của ∆ABC nên BG=23BDBG=23BD và CG=23CECG=23CE.
Mà BD = CE (do ∆ADB = ∆AEC)
Nên BG = CG
Do đó ∆GBC cân tại G.
c) G là trọng tâm tam giác ABC nên GD=12GB,GE=12GCGD=12GB,GE=12GC
Do đó GD+GE=12(GB+GC)GD+GE=12(GB+GC).
Mặt khác: BG + CG > BC (bất đẳng thức trong tam giác GCB).
Suy ra GD+GE>12BCGD+GE>12BC.
a, xét 2
2
a: Xét ΔABC có
BM là đường trung tuyến
CN là đường trung tuyến
BM cắt CN tại G
DO đó:G là trọng tâm
=>BG=2/3BM; CG=2/3CN
\(B M + C N = \frac{2}{3} B G + \frac{2}{3} C G > \frac{2}{3} B C\)
b: BM=CN nên GB=GC
mà AB=AC
nên AG là đường trung trực của BC
=>AG\(\bot\)