

Nguyễn Trần Gia Hân
Giới thiệu về bản thân



































Theo bất đẳng thức tam giác:
\(A B - A C < B C < A B + A C\)
\(5 < B C < \&\text{nbsp}; 7\)
\(B C = 6 c m\)
Vậy tam giác \(A B C\) cân tại \(B\).
a) Do \(A B < A C\) nên \(\hat{C} < \hat{B}\).
Vậy \(\hat{C} < \hat{B} < \hat{A}\).
b) Xét \(\triangle A B C\) và \(\triangle A D C\).
\(B A C = D A C = 9 0^{\circ} ; B A = A D ; A C\) cạnh chung.
\(\Delta A B C = \triangle A D C\) (hai cạnh góc vuông).
\(B C = A D\) (cạnh tương ứng) \(\Rightarrow \triangle C B D\) cân tại \(C\).
c) Xét \(\triangle C B D\) có \(C A , B E\) là trung tuyến (gt).
Nên \(I\) là trọng tâm \(\triangle C B D\).
Suy ra \(D I\) cắt \(B C\) tại trung điểm của \(B C\).
Theo bất đẳng thức tam giác:
\(A B - A C < B C < A B + A C\)
\(5 < B C < \&\text{nbsp}; 7\)
\(B C = 6 c m\)
Vậy tam giác \(A B C\) cân tại \(B\).
Theo bất đẳng thức tam giác:
\(A B - A C < B C < A B + A C\)
\(5 < B C < \&\text{nbsp}; 7\)
\(B C = 6 c m\)
Vậy tam giác \(A B C\) cân tại \(B\).