Nguyễn Trần Gia Hân

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Trần Gia Hân
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).

a) Do \(A B < A C\) nên \(\hat{C} < \hat{B}\).

Vậy \(\hat{C} < \hat{B} < \hat{A}\).

b) Xét \(\triangle A B C\) và \(\triangle A D C\).

\(B A C = D A C = 9 0^{\circ} ; B A = A D ; A C\) cạnh chung.

\(\Delta A B C = \triangle A D C\) (hai cạnh góc vuông).

\(B C = A D\) (cạnh tương ứng) \(\Rightarrow \triangle C B D\) cân tại \(C\).

c) Xét \(\triangle C B D\) có \(C A , B E\) là trung tuyến (gt).

Nên \(I\) là trọng tâm \(\triangle C B D\).

Suy ra \(D I\) cắt \(B C\) tại trung điểm của \(B C\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).

Theo bất đẳng thức tam giác:

\(A B - A C < B C < A B + A C\)

\(5 < B C < \&\text{nbsp}; 7\)

\(B C = 6 c m\)

Vậy tam giác \(A B C\) cân tại \(B\).