

Vũ Ngọc Linh Đan
Giới thiệu về bản thân



































a) \(x - \frac{2}{3} = \frac{- 5}{12}\)
\(x = \frac{- 5}{12} + \frac{2}{3}\)
\(x = \frac{- 5}{12} + \frac{8}{12}\)
\(x = \frac{- 5 + 8}{12}\)
\(x = \frac{3}{12}\)
\(x = \frac{1}{4}\)
b) \(\frac{8}{5} : x = \frac{- 2}{3}\)
\(x = \frac{8}{5} : \left(\right. \&\text{nbsp}; \frac{- 2}{3} \left.\right)\)
\(x = \frac{8}{5} . \&\text{nbsp}; \left(\right. \&\text{nbsp}; \frac{3}{- 2} \left.\right)\)
\(x = \frac{- 12}{5}\)
c) \(1 - \frac{3}{7} . x = - \frac{2}{7}\)
\(\frac{3}{7} . x = 1 - \left(\right. - \frac{2}{7} \left.\right)\)
\(\frac{3}{7} . x = \frac{9}{7}\)
\(x = \frac{9}{7} : \frac{3}{7}\)
\(x = \frac{9}{7} . \frac{7}{3}\)
\(x = 3\)
Để chứng minh phân số tối giản, ta chứng minh ƯCLN của tử số và mẫu số là \(1\).
Goi ƯCLN \(\left(\right. n - 1 ; n - 2 \left.\right) = d \Rightarrow n - 1 : d\) và \(n - 2 : d\)
\(\Rightarrow \left(\right. n - 1 \left.\right) - \left(\right. n - 2 \left.\right) : d \Rightarrow 1 : d\)
\(\Rightarrow d = 1\) với mọi \(n\).
Vậy với mọi \(n \in \mathbb{Z}\) thì \(M = \frac{n - 1}{n - 2}\) là phân số tối giản.
Để chứng minh phân số tối giản, ta chứng minh ƯCLN của tử số và mẫu số là \(1\).
Goi ƯCLN \(\left(\right. n - 1 ; n - 2 \left.\right) = d \Rightarrow n - 1 : d\) và \(n - 2 : d\)
\(\Rightarrow \left(\right. n - 1 \left.\right) - \left(\right. n - 2 \left.\right) : d \Rightarrow 1 : d\)
\(\Rightarrow d = 1\) với mọi \(n\).
Vậy với mọi \(n \in \mathbb{Z}\) thì \(M = \frac{n - 1}{n - 2}\) là phân số tối giản.
Chiều dài đám đất là:
\(60. \frac{4}{3} = 80\) (m)
Diện tích đám đất là:
\(60.80 = 4 800\) (m\(^{2}\))
Diện tích trồng cây là:
\(4 800. \frac{7}{12} = 2 800\) (m\(^{2}\))
Diện tích còn lại là:
\(4 800 - 2 800 = 2 000\) (m\(^{2}\))
Diện tích ao cá:
\(2 000.30 \% = 600\) (m\(^{2}\))
a) \(\frac{- 5}{9} + \frac{8}{15} + \frac{- 2}{11} + \frac{4}{- 9} + \frac{7}{15} = \left(\right. \frac{- 5}{9} + \frac{- 4}{9} \left.\right) + \left(\right. \frac{8}{15} + \frac{7}{15} \left.\right) + \frac{- 2}{11}\)
\(= \frac{- 9}{9} + \frac{15}{15} + \frac{- 2}{11}\)
\(= - 1 + 1 + \frac{- 2}{11}\)
\(= 0 + \frac{- 2}{11} = \frac{- 2}{11}\).
b) \(\left(\right. \frac{7}{2} . \frac{5}{6} \left.\right) + \left(\right. \frac{7}{6} : \frac{2}{7} \left.\right)\)
\(= \left(\right. \frac{7}{2} . \frac{5}{6} \left.\right) + \left(\right. \frac{7}{6} . \frac{7}{2} \left.\right)\)
\(= \frac{7}{2} . \left(\right. \frac{5}{6} + \frac{7}{6} \left.\right)\)
\(= \frac{7}{2} . 2\)
\(= 7\)
a) Có \(\frac{- 3}{8} = \frac{- 9}{24} ; \frac{5}{- 12} = \frac{- 10}{12}\)
Vì \(\frac{- 9}{24} > \frac{- 10}{24}\) nên \(\frac{- 3}{8} > \frac{5}{- 12}\).
b) Có \(\frac{3131}{5252} = \frac{3131 : 101}{5252 : 101} = \frac{31}{52}\).
Vậy \(\frac{3131}{5252} = \frac{31}{52}\).