Phó Học Hưng

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Phó Học Hưng
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\)

Suy ra \(\hat{O M K} = \hat{O B K} = 9 0^{\circ}\) (tính chất tiếp tuyến)

Suy ra \(\Delta M K O\) vuông tại \(M\)\(\Delta O B K\) vuông tại \(B\).

Dựng đường trung tuyến \(M I\)\(B I\) lần lượt trong \(\Delta M K O , \Delta O B K\) với \(I\) là trung điểm của \(O K\).

Suy ra \(I M = I O = I K = I B = \frac{1}{2} O K\) (tính chất đường trung tuyến trong tam giác vuông)

Suy ra các điểm \(M\)\(O\)\(K\)\(B\) đều nằm trên đường tròn \(\left(\right. I \left.\right)\)

Vậy tứ giác \(M O B K\) là tứ giác nội tiếp.

b) Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\) cắt nhau tại \(K\).

Suy ra \(K M = K B\) (tính chất hai tiếp tuyến cắt nhau)

Mà \(K O\) là phân giác của \(\hat{M K B}\)

Suy ra \(K O\) đồng thời là đường cao trong \(\Delta M K B\).

Vậy \(O K \bot M B\)

Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\)

Suy ra \(\hat{O M K} = \hat{O B K} = 9 0^{\circ}\) (tính chất tiếp tuyến)

Suy ra \(\Delta M K O\) vuông tại \(M\)\(\Delta O B K\) vuông tại \(B\).

Dựng đường trung tuyến \(M I\)\(B I\) lần lượt trong \(\Delta M K O , \Delta O B K\) với \(I\) là trung điểm của \(O K\).

Suy ra \(I M = I O = I K = I B = \frac{1}{2} O K\) (tính chất đường trung tuyến trong tam giác vuông)

Suy ra các điểm \(M\)\(O\)\(K\)\(B\) đều nằm trên đường tròn \(\left(\right. I \left.\right)\)

Vậy tứ giác \(M O B K\) là tứ giác nội tiếp.

b) Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\) cắt nhau tại \(K\).

Suy ra \(K M = K B\) (tính chất hai tiếp tuyến cắt nhau)

Mà \(K O\) là phân giác của \(\hat{M K B}\)

Suy ra \(K O\) đồng thời là đường cao trong \(\Delta M K B\).

Vậy \(O K \bot M B\)

Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\)

Suy ra \(\hat{O M K} = \hat{O B K} = 9 0^{\circ}\) (tính chất tiếp tuyến)

Suy ra \(\Delta M K O\) vuông tại \(M\)\(\Delta O B K\) vuông tại \(B\).

Dựng đường trung tuyến \(M I\)\(B I\) lần lượt trong \(\Delta M K O , \Delta O B K\) với \(I\) là trung điểm của \(O K\).

Suy ra \(I M = I O = I K = I B = \frac{1}{2} O K\) (tính chất đường trung tuyến trong tam giác vuông)

Suy ra các điểm \(M\)\(O\)\(K\)\(B\) đều nằm trên đường tròn \(\left(\right. I \left.\right)\)

Vậy tứ giác \(M O B K\) là tứ giác nội tiếp.

b) Ta có \(M K\)\(B K\) là các tiếp tuyến của \(\left(\right. O \left.\right)\) cắt nhau tại \(K\).

Suy ra \(K M = K B\) (tính chất hai tiếp tuyến cắt nhau)

Mà \(K O\) là phân giác của \(\hat{M K B}\)

Suy ra \(K O\) đồng thời là đường cao trong \(\Delta M K B\).

Vậy \(O K \bot M B\)

không gian mẫu là:{1,2,3,4,5,6}
Suy ra n(không gian mẫu) là 6 phần tử
Kết quả thuận lợi cho biến cố A là : 3,6 khi đó n(A) là 2 phần tử
Nên xác suất của biến cố A là P(A)=n(A)/n(không gian mẫu)=2/6=1/3


Tần số ghép nhóm của nhóm [60;70) là 10
Tần số tương đối ghép nhóm của nhóm [60;70) là 10/40 x 100%=25%