

NGUYỄN KIM NGÂN
Giới thiệu về bản thân



































a) Diện tích đáy hình vuông của chiếc lều là:
\(S_{đ \overset{ˊ}{\text{a}} \text{y}} = 3^{2} = 9\) (m\(^{2}\))
Thể tích không khí bên trong chiếc lều là:
\(V = \frac{1}{3} S_{đ \overset{ˊ}{\text{a}} \text{y}} h = \frac{1}{3} . 9.2 , 8 = 8 , 4\) (m\(^{3}\)).
b) Diện tích xung quanh của chiếc lều là:
\(S_{x q} = \frac{1}{2} . C . d = \frac{1}{2} . 4.3.3 , 18 = 19 , 08\) (m\(^{2}\))
Diện tích vải phủ bốn phía và trải nền đất cho chiếc lều là:
\(S = 9 + 19 , 08 = 28 , 08\) (m\(^{2}\)).
Do \(28 , 08 > 20\) nên số tiền mua vải được giảm giá \(5 \%\) trên tổng hóa đơn.
Vậy số tiền mua vải là:
\(28 , 08.15 000. \left(\right. 100 \% - 5 \% \left.\right) = 400 140\) (đồng).
a) Số đo góc \(D\) ở đuôi chiếc diều là: \(\hat{D}=360^{\circ}-\left(\right.\hat{A}+\hat{B}+\hat{C}\left.\right)=360^{\circ}-\left(\right.102^{\circ}+102^{\circ}+102^{\circ}\left.\right)=54^{\circ}.\)
b) Xét \(\Delta O A D\) vuông tại \(O\), theo định lí Pythagore ta có:
\(O A^{2} = A D^{2} - O D^{2} = 30^{2} - 26 , 7^{2} = 187 , 11\)
Xét \(\Delta O A B\) vuông tại \(O ,\) theo định lí Pythagore ta có:
\(O B^{2} = A B^{2} - O A^{2} = 17 , 5^{2} - 187 , 11 = 119 , 14\)
Do đó \(O B = \sqrt{119 , 14} \approx 10 , 9\) (cm).
Suy ra \(B D = O B + O D = 10 , 9 + 26 , 7 = 37 , 6\) (cm).
a) \(x y + y^{2} - x - y\)
\(= \left(\right. x y + y^{2} \left.\right) - \left(\right. x + y \left.\right)\)
\(= y \left(\right. x + y \left.\right) - \left(\right. x + y \left.\right)\)
\(= \left(\right. x + y \left.\right) \left(\right. y - 1 \left.\right) .\)
b) \(\left(\left(\right. x^{2} y^{2} - 8 \left.\right)\right)^{2} - 1\)
\(= \left(\right. x^{2} y^{2} - 8 - 1 \left.\right) \left(\right. x^{2} y^{2} - 8 + 1 \left.\right)\)
\(= \left(\right. x^{2} y^{2} - 9 \left.\right) \left(\right. x^{2} y^{2} - 7 \left.\right)\)
\(= \left(\right. x y - 3 \left.\right) \left(\right. x y + 3 \left.\right) \left(\right. x^{2} y^{2} - 7 \left.\right) .\)
\(= \left(\right. x - 1 \left.\right) \left(\right. x + 8 \left.\right) .\)
a) \(x y + y^{2} - x - y\)
\(= \left(\right. x y + y^{2} \left.\right) - \left(\right. x + y \left.\right)\)
\(= y \left(\right. x + y \left.\right) - \left(\right. x + y \left.\right)\)
\(= \left(\right. x + y \left.\right) \left(\right. y - 1 \left.\right) .\)
b) \(\left(\left(\right. x^{2} y^{2} - 8 \left.\right)\right)^{2} - 1\)
\(= \left(\right. x^{2} y^{2} - 8 - 1 \left.\right) \left(\right. x^{2} y^{2} - 8 + 1 \left.\right)\)
\(= \left(\right. x^{2} y^{2} - 9 \left.\right) \left(\right. x^{2} y^{2} - 7 \left.\right)\)
\(= \left(\right. x y - 3 \left.\right) \left(\right. x y + 3 \left.\right) \left(\right. x^{2} y^{2} - 7 \left.\right) .\)
\(= \left(\right. x - 1 \left.\right) \left(\right. x + 8 \left.\right) .\)
ai rảnh đâu ba