HOÀNG ĐỨC MINH

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của HOÀNG ĐỨC MINH
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a) Với \(x \neq \pm 3\) ta có:

\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)

\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)

Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)

b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)

Suy ra \(- x + 3 = 6\)

Do đó \(x = - 3\) (không thỏa mãn)

Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)

c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)

Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:

\(x - 3\)

\(- 3\)

\(- 1\)

\(1\)

\(3\)

\(x\)

 

 \(0\)

  

 

 \(2\)

  

 

 \(4\)

  

 

 \(6\)

  

Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.

Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).​

a) Với \(x \neq \pm 3\) ta có:

\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)

\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)

Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)

b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)

Suy ra \(- x + 3 = 6\)

Do đó \(x = - 3\) (không thỏa mãn)

Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)

c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)

Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:

\(x - 3\)

\(- 3\)

\(- 1\)

\(1\)

\(3\)

\(x\)

 

 \(0\)

  

 

 \(2\)

  

 

 \(4\)

  

 

 \(6\)

  

Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.

Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).​

a) Với \(x \neq \pm 3\) ta có:

\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)

\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)

Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)

b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)

Suy ra \(- x + 3 = 6\)

Do đó \(x = - 3\) (không thỏa mãn)

Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)

c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)

Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:

\(x - 3\)

\(- 3\)

\(- 1\)

\(1\)

\(3\)

\(x\)

 

 \(0\)

  

 

 \(2\)

  

 

 \(4\)

  

 

 \(6\)

  

Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.

Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).​

a) Với \(x \neq \pm 3\) ta có:

\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)

\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)

\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)

Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)

b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)

Suy ra \(- x + 3 = 6\)

Do đó \(x = - 3\) (không thỏa mãn)

Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)

c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)

Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:

\(x - 3\)

\(- 3\)

\(- 1\)

\(1\)

\(3\)

\(x\)

 

 \(0\)

  

 

 \(2\)

  

 

 \(4\)

  

 

 \(6\)

  

Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.

Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).​

a) \(\triangle A B C\) cân tại \(A\) nên \(\hat{A B C} = \hat{A C B}\).

Vì \(B Q\) và \(C P\) là đường phân giác của \(\hat{B} , \hat{C}\) nên \(\hat{B_{1}} = \hat{B_{2}} = \frac{\hat{A B C}}{2}\)\(\hat{C_{1}} = \hat{C_{2}} = \frac{\hat{A C B}}{2}\).

Do đó \(\hat{B_{1}} = \hat{B_{2}} = \hat{C_{1}} = \hat{C_{2}}\).

Suy ra \(\triangle O B C\) cân tại \(O\).

b) Vì \(O\) là giao điểm các đường phân giác \(C P\) và \(B Q\) trong \(\triangle A B C\) nên \(O\) là giao điểm ba đường phân giác trong \(\triangle A B C\).

Do đó, \(O\) cách đều ba cạnh \(A B , A C\) và \(B C\).

c) Ta có \(\triangle A B C\) cân tại \(A , A O\) là đường phân giác của góc \(A\) nên \(A O\) đồng thời là trung tuyến và đường cao của \(\triangle A B C\).

Vậy đường thẳng \(A O\) đi qua trung điểm của đoạn thẳng \(B C\) và vuông góc với nó.

d) Ta có \(\triangle P B C = \triangle Q C B\) (g.c.g)

\(\Rightarrow C P = B Q\) (hai cạnh tương ứng).

e) Ta có \(A P = A B - B P\)\(A Q = A C - C Q\) (1);

\(\triangle P B C = \triangle Q C B \Rightarrow B P = C Q\) (2).

Lại có \(A B = A C\) (tam giác \(A B C\) cân tại \(A\)) (3).

Từ (1), (2) và (3) suy ra \(A P = A Q\).

Vậy tam giác \(A P Q\) cân tại \(A\).

a) Xét \(\triangle O A D\) và \(\triangle O C B\), có

\(O A = O C\) (giả thiết);

\(\hat{O}\) chung;

\(O D = O B\) (giả thiết).

Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)

\(\Rightarrow A D = C B\) (hai cạnh tương ứng).

b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).

Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)

\(\Rightarrow \hat{O B C} = \hat{O D A}\)\(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)

Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)

\(\Rightarrow \hat{A B E} = \hat{C D E}\)

Xét \(\triangle A B E\) và \(\triangle C D E\) có

\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);

\(A B = C D\) (chứng minh trên);

\(\hat{A B E} = \hat{C D E}\) (chứng minh trên) 

Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).

c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).

Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);

\(O E\) cạnh chung;

\(O A = O C\) (giả thiết).

Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)

\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)

\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).


a) Xét \(\triangle O A D\) và \(\triangle O C B\), có

\(O A = O C\) (giả thiết);

\(\hat{O}\) chung;

\(O D = O B\) (giả thiết).

Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)

\(\Rightarrow A D = C B\) (hai cạnh tương ứng).

b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).

Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)

\(\Rightarrow \hat{O B C} = \hat{O D A}\)\(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)

Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)

\(\Rightarrow \hat{A B E} = \hat{C D E}\)

Xét \(\triangle A B E\) và \(\triangle C D E\) có

\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);

\(A B = C D\) (chứng minh trên);

\(\hat{A B E} = \hat{C D E}\) (chứng minh trên) 

Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).

c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).

Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);

\(O E\) cạnh chung;

\(O A = O C\) (giả thiết).

Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)

\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)

\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).


a) Xét \(\triangle O A D\) và \(\triangle O C B\), có

\(O A = O C\) (giả thiết);

\(\hat{O}\) chung;

\(O D = O B\) (giả thiết).

Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)

\(\Rightarrow A D = C B\) (hai cạnh tương ứng).

b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).

Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)

\(\Rightarrow \hat{O B C} = \hat{O D A}\)\(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)

Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)

\(\Rightarrow \hat{A B E} = \hat{C D E}\)

Xét \(\triangle A B E\) và \(\triangle C D E\) có

\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);

\(A B = C D\) (chứng minh trên);

\(\hat{A B E} = \hat{C D E}\) (chứng minh trên) 

Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).

c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).

Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);

\(O E\) cạnh chung;

\(O A = O C\) (giả thiết).

Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)

\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)

\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).


a) Xét \(\triangle O A D\) và \(\triangle O C B\), có

\(O A = O C\) (giả thiết);

\(\hat{O}\) chung;

\(O D = O B\) (giả thiết).

Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)

\(\Rightarrow A D = C B\) (hai cạnh tương ứng).

b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).

Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)

\(\Rightarrow \hat{O B C} = \hat{O D A}\)\(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)

Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)

\(\Rightarrow \hat{A B E} = \hat{C D E}\)

Xét \(\triangle A B E\) và \(\triangle C D E\) có

\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);

\(A B = C D\) (chứng minh trên);

\(\hat{A B E} = \hat{C D E}\) (chứng minh trên) 

Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).

c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).

Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);

\(O E\) cạnh chung;

\(O A = O C\) (giả thiết).

Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)

\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)

\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).


Kẻ \(I E \bot A D\) (với \(E \in A D\)).

Gọi \(A x\) là tia đối của tia \(A B\).

loading...

Vì \(\hat{B A C}\) và \(\hat{C A x}\) là hai góc kề bù mà \(\hat{B A C} = 12 0^{\circ}\) nên \(\hat{C A x} = 6 0^{\circ}\) (1) 

Ta có \(A D\) là phân giác của \(\hat{B A C} \Rightarrow \hat{D A C} = \frac{1}{2} \hat{B A C} = 6 0^{\circ}\) (2)

Từ (1) và (2) suy ra \(A C\) là tia phân giác của \(\hat{D A x}\)

\(\Rightarrow I H = I E\) (tính chất tia phân giác của một góc) (3)

Vì \(D I\) là phân giác của \(\hat{A D C}\) nên \(I K = I E\) (tính chất tia phân giác của một góc) (4)

Từ (3) và \(\left(\right. 4 \left.\right)\) suy ra \(I H = I K\).