

HOÀNG ĐỨC MINH
Giới thiệu về bản thân



































a) Với \(x \neq \pm 3\) ta có:
\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)
\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)
Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)
b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)
Suy ra \(- x + 3 = 6\)
Do đó \(x = - 3\) (không thỏa mãn)
Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)
c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)
Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:
\(x - 3\) | \(- 3\) | \(- 1\) | \(1\) | \(3\) |
\(x\) |
\(0\)
|
\(2\)
|
\(4\)
|
\(6\)
|
Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.
Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).
a) Với \(x \neq \pm 3\) ta có:
\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)
\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)
Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)
b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)
Suy ra \(- x + 3 = 6\)
Do đó \(x = - 3\) (không thỏa mãn)
Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)
c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)
Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:
\(x - 3\) | \(- 3\) | \(- 1\) | \(1\) | \(3\) |
\(x\) |
\(0\)
|
\(2\)
|
\(4\)
|
\(6\)
|
Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.
Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).
a) Với \(x \neq \pm 3\) ta có:
\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)
\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)
Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)
b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)
Suy ra \(- x + 3 = 6\)
Do đó \(x = - 3\) (không thỏa mãn)
Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)
c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)
Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:
\(x - 3\) | \(- 3\) | \(- 1\) | \(1\) | \(3\) |
\(x\) |
\(0\)
|
\(2\)
|
\(4\)
|
\(6\)
|
Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.
Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).
a) Với \(x \neq \pm 3\) ta có:
\(A = \frac{x + 15}{x^{2} - 9} + \frac{2}{x + 3} = \frac{x + 15}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} + \frac{2}{x + 3}\)
\(= \frac{x + 15 + 2 \left(\right. x - 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{x + 15 + 2 x - 6}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 x + 9}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)}\)
\(= \frac{3 \left(\right. x + 3 \left.\right)}{\left(\right. x + 3 \left.\right) \left(\right. x - 3 \left.\right)} = \frac{3}{x - 3}\)
Vậy với \(x \neq \pm 3\) thì \(A = \frac{3}{x - 3} .\)
b) Với \(x \neq \pm 3\), để \(A = \frac{- 1}{2}\) thì \(\frac{3}{x - 3} = \frac{- 1}{2}\)
Suy ra \(- x + 3 = 6\)
Do đó \(x = - 3\) (không thỏa mãn)
Vậy không có giá trị nào của \(x\) để \(A = \frac{- 1}{2} .\)
c) Với \(x \neq \pm 3\), để \(A\) nguyên thì \(\frac{3}{x - 3} \in \mathbb{Z}\), tức \(x - 3 \in\) Ư\(\left(\right. 3 \left.\right)\)
Mà Ư\(\left(\right. 3 \left.\right) = \left{\right. \pm 1 ; \pm 3 \left.\right}\), ta có bảng sau:
\(x - 3\) | \(- 3\) | \(- 1\) | \(1\) | \(3\) |
\(x\) |
\(0\)
|
\(2\)
|
\(4\)
|
\(6\)
|
Các giá trị \(x\) tìm được ở trên đều thỏa mãn điều kiện \(x \neq \pm 3\) và \(x\) là số tự nhiên.
Vậy \(x \in \left{\right. 0 ; 2 ; 4 ; 6 \left.\right}\).
a) \(\triangle A B C\) cân tại \(A\) nên \(\hat{A B C} = \hat{A C B}\).
Vì \(B Q\) và \(C P\) là đường phân giác của \(\hat{B} , \hat{C}\) nên \(\hat{B_{1}} = \hat{B_{2}} = \frac{\hat{A B C}}{2}\), \(\hat{C_{1}} = \hat{C_{2}} = \frac{\hat{A C B}}{2}\).
Do đó \(\hat{B_{1}} = \hat{B_{2}} = \hat{C_{1}} = \hat{C_{2}}\).
Suy ra \(\triangle O B C\) cân tại \(O\).
b) Vì \(O\) là giao điểm các đường phân giác \(C P\) và \(B Q\) trong \(\triangle A B C\) nên \(O\) là giao điểm ba đường phân giác trong \(\triangle A B C\).
Do đó, \(O\) cách đều ba cạnh \(A B , A C\) và \(B C\).
c) Ta có \(\triangle A B C\) cân tại \(A , A O\) là đường phân giác của góc \(A\) nên \(A O\) đồng thời là trung tuyến và đường cao của \(\triangle A B C\).
Vậy đường thẳng \(A O\) đi qua trung điểm của đoạn thẳng \(B C\) và vuông góc với nó.
d) Ta có \(\triangle P B C = \triangle Q C B\) (g.c.g)
\(\Rightarrow C P = B Q\) (hai cạnh tương ứng).
e) Ta có \(A P = A B - B P\), \(A Q = A C - C Q\) (1);
\(\triangle P B C = \triangle Q C B \Rightarrow B P = C Q\) (2).
Lại có \(A B = A C\) (tam giác \(A B C\) cân tại \(A\)) (3).
Từ (1), (2) và (3) suy ra \(A P = A Q\).
Vậy tam giác \(A P Q\) cân tại \(A\).
a) Xét \(\triangle O A D\) và \(\triangle O C B\), có
\(O A = O C\) (giả thiết);
\(\hat{O}\) chung;
\(O D = O B\) (giả thiết).
Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)
\(\Rightarrow A D = C B\) (hai cạnh tương ứng).
b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).
Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)
\(\Rightarrow \hat{O B C} = \hat{O D A}\); \(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)
Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)
\(\Rightarrow \hat{A B E} = \hat{C D E}\)
Xét \(\triangle A B E\) và \(\triangle C D E\) có
\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);
\(A B = C D\) (chứng minh trên);
\(\hat{A B E} = \hat{C D E}\) (chứng minh trên)
Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).
c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).
Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);
\(O E\) cạnh chung;
\(O A = O C\) (giả thiết).
Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)
\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)
\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).
a) Xét \(\triangle O A D\) và \(\triangle O C B\), có
\(O A = O C\) (giả thiết);
\(\hat{O}\) chung;
\(O D = O B\) (giả thiết).
Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)
\(\Rightarrow A D = C B\) (hai cạnh tương ứng).
b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).
Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)
\(\Rightarrow \hat{O B C} = \hat{O D A}\); \(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)
Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)
\(\Rightarrow \hat{A B E} = \hat{C D E}\)
Xét \(\triangle A B E\) và \(\triangle C D E\) có
\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);
\(A B = C D\) (chứng minh trên);
\(\hat{A B E} = \hat{C D E}\) (chứng minh trên)
Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).
c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).
Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);
\(O E\) cạnh chung;
\(O A = O C\) (giả thiết).
Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)
\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)
\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).
a) Xét \(\triangle O A D\) và \(\triangle O C B\), có
\(O A = O C\) (giả thiết);
\(\hat{O}\) chung;
\(O D = O B\) (giả thiết).
Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)
\(\Rightarrow A D = C B\) (hai cạnh tương ứng).
b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).
Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)
\(\Rightarrow \hat{O B C} = \hat{O D A}\); \(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)
Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)
\(\Rightarrow \hat{A B E} = \hat{C D E}\)
Xét \(\triangle A B E\) và \(\triangle C D E\) có
\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);
\(A B = C D\) (chứng minh trên);
\(\hat{A B E} = \hat{C D E}\) (chứng minh trên)
Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).
c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).
Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);
\(O E\) cạnh chung;
\(O A = O C\) (giả thiết).
Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)
\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)
\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).
a) Xét \(\triangle O A D\) và \(\triangle O C B\), có
\(O A = O C\) (giả thiết);
\(\hat{O}\) chung;
\(O D = O B\) (giả thiết).
Do đó \(\triangle O A D = \triangle O C B\) (c.g.c)
\(\Rightarrow A D = C B\) (hai cạnh tương ứng).
b) Do \(O A = O C\) và \(O B = O D\) nên \(A B = C D\).
Mà \(\triangle O A D = \triangle O C B\) (chứng minh trên)
\(\Rightarrow \hat{O B C} = \hat{O D A}\); \(\hat{O A D} = \hat{O C B}\) (hai góc tương ứng)
Mặt khác \(\hat{A B E} + \hat{O B C} = \hat{C D E} + \hat{O D A} = 18 0^{\circ}\)
\(\Rightarrow \hat{A B E} = \hat{C D E}\)
Xét \(\triangle A B E\) và \(\triangle C D E\) có
\(\hat{O A D} = \hat{O C B}\) (chứng minh trên);
\(A B = C D\) (chứng minh trên);
\(\hat{A B E} = \hat{C D E}\) (chứng minh trên)
Do đó \(\triangle A B E = \triangle C D E\) (g.c.g).
c) Vi \(\triangle A B E = \triangle C D E\) (chứng minh trên) nên \(A E = C E\) (hai cạnh tương ứng).
Xét \(\triangle A E O\) và \(\triangle C E O\) có \(A E = C E\) (chứng minh trên);
\(O E\) cạnh chung;
\(O A = O C\) (giả thiết).
Do đó \(\triangle A E O = \triangle C E O\) (c.c.c)
\(\Rightarrow \hat{A O E} = \hat{C O E}\) (hai góc tương ứng)
\(\Rightarrow O E\) là tia phân giác của \(\hat{x O y}\).
Kẻ \(I E \bot A D\) (với \(E \in A D\)).
Gọi \(A x\) là tia đối của tia \(A B\).
Vì \(\hat{B A C}\) và \(\hat{C A x}\) là hai góc kề bù mà \(\hat{B A C} = 12 0^{\circ}\) nên \(\hat{C A x} = 6 0^{\circ}\) (1)
Ta có \(A D\) là phân giác của \(\hat{B A C} \Rightarrow \hat{D A C} = \frac{1}{2} \hat{B A C} = 6 0^{\circ}\) (2)
Từ (1) và (2) suy ra \(A C\) là tia phân giác của \(\hat{D A x}\)
\(\Rightarrow I H = I E\) (tính chất tia phân giác của một góc) (3)
Vì \(D I\) là phân giác của \(\hat{A D C}\) nên \(I K = I E\) (tính chất tia phân giác của một góc) (4)
Từ (3) và \(\left(\right. 4 \left.\right)\) suy ra \(I H = I K\).