

H' Hoài Adrơng
Giới thiệu về bản thân



































njk
njk
Gọi P_0 = 10^9 đồng là số tiền vay ban đầu, r = 0.005 là lãi suất hàng tháng, và M = 3 \times 10^7 đồng là số tiền trả hàng tháng. Gọi n là số tháng cần trả hết nợ.
Sau n tháng, số tiền còn nợ là:
P_n = P_0(1+r)^n - M \frac{(1+r)^n - 1}{r}
Để trả hết nợ, P_n = 0:
P_0(1+r)^n = M \frac{(1+r)^n - 1}{r}
P_0 r (1+r)^n = M (1+r)^n - M
M = (M - P_0 r) (1+r)^n
(1+r)^n = \frac{M}{M - P_0 r}
n = \frac{\ln\left(\frac{M}{M - P_0 r}\right)}{\ln(1+r)}
Thay số:
P_0 r = 10^9 \times 0.005 = 5 \times 10^6
M - P_0 r = 3 \times 10^7 - 5 \times 10^6 = 2.5 \times 10^7
\frac{M}{M - P_0 r} = \frac{3 \times 10^7}{2.5 \times 10^7} = \frac{30}{25} = 1.2
n = \frac{\ln(1.2)}{\ln(1.005)} \approx \frac{0.1823}{0.004988} \approx 36.556
Vì số tháng phải là số nguyên, ta cần xem xét sau 36 tháng còn nợ bao nhiêu:
P_{36} = 10^9 (1.005)^{36} - 3 \times 10^7 \frac{(1.005)^{36} - 1}{0.005}
P_{36} \approx 10^9 (1.19668) - 3 \times 10^7 \frac{0.19668}{0.005}
P_{36} \approx 1196680000 - 3 \times 10^7 \times 39.336 \approx 16600000
Tháng thứ 37, số tiền nợ còn lại là 16600000 \times 1.005 = 16683000, nhỏ hơn 30 triệu. Vậy cần 37 tháng để trả hết nợ.
Final Answer: The final answer is \boxed{37}