

Nguyễn Tuấn Hưng
Giới thiệu về bản thân



































a. \(r\) = 150 triệu km = 150.109 m
\(T_{1}\) = 365,25 ngày
\(\omega_{1} = \frac{2 \pi}{T_{1}} = 2.1 0^{- 7}\) rad/s
\(v_{1} = \omega_{1} \left(\right. r + R \left.\right) = 30001\) m/s
b. \(R\) = 6400 km = 6400.103 m
\(T_{2}\) = 24 giờ
\(\omega_{2} = \frac{2 \pi}{T_{2}} = 7 , 27.1 0^{- 5}\) rad/s
\(v_{2} = \omega_{2} R = 465\) m/s
c. \(R = 6400. cos 3 0^{0} = \frac{6400. \sqrt{3}}{2}\) m
\(T_{3}\) = 24 giờ
\(\omega_{3} = \frac{2 \pi}{T_{3}} = 7 , 27.1 0^{- 5}\) rad/s
\(v_{3} = \omega_{3} R = 402\) m/s
a. Độ dãn của lò xo khi hệ cân bằng:
Áp dụng định luật Hooke ở trạng thái cân bằng:
\(F_{đ h} = P \Rightarrow k \cdot \Delta l = m \cdot g\)\(\)
Δl=\(\frac{m.g}{k}\) =\(\frac{0,5.9,8}{100}\) =0,049 m=4,9 cm
b. Lò xo có độ dãn cực đại là 10 cm → biên độ là phần dao động thêm so với vị trí cân bằng.
\(A=10-4,9=5,1\operatorname{cm}\)
c. Độ dãn tổng cộngLực kéo:
\(\Delta l=4,9+6=10,9\operatorname{cm}=0,109m\)
\(F=k\cdot\Delta l=100\cdot0,109=10,9m\)
a. Độ dãn của lò xo khi hệ cân bằng:
Áp dụng định luật Hooke ở trạng thái cân bằng:
\(F_{đ h} = P \Rightarrow k \cdot \Delta l = m \cdot g\)\(\)
Δl=\(\frac{m.g}{k}\) =\(\frac{0,5.9,8}{100}\) =0,049 m=4,9 cm
b. Lò xo có độ dãn cực đại là 10 cm → biên độ là phần dao động thêm so với vị trí cân bằng.
\(A=10-4,9=5,1\operatorname{cm}\)
c. Độ dãn tổng cộngLực kéo:
\(\Delta l=4,9+6=10,9\operatorname{cm}=0,109m\)
\(F=k\cdot\Delta l=100\cdot0,109=10,9m\)
a. Sau va chạm chúng dính vào nhau và chuyển động với vận tốc \(\text{v}\) = 3m/s theo hướng chuyển động ban đầu của viên bi 1.
Chọn chiều dương là chiều chuyển động của bi 1, bi 2 ban đầu.
Ta có: \(m_1\text{v}_1+m_2\text{v}_2=\left(\right.m_1+m_2\left.\right)\text{v}^{}\)
\(\Rightarrow \text{v}_{2} = \frac{\left(\right. m_{1} + m_{2} \left.\right) \text{v} - m_{1} \text{v}_{1}}{m_{2}} = \frac{\left(\right. 0 , 5 + 0 , 3 \left.\right) . 3 - 0 , 5.4}{0 , 3} = 1 , 33\) m/s
b. Sau va chạm chúng dính vào nhau và chuyển động động với vận tốc \(\text{v}\) = 3 m/s theo hướng vuông góc với hướng chuyển động ban đầu của viên bi 1.
suy ra: \(p_{2} = \sqrt{p^{2} + p_{1}^{2}}\)
\(p = \left(\right. m_{1} + m_{2} \left.\right) \text{v} = \left(\right. 0 , 5 + 0 , 3 \left.\right) . 3 = 2 , 4\) kg.m/s
\(p_{1} = m_{1} \text{v}_{1} = 0 , 5.4 = 2\) kg.m/s
\(\Rightarrow p_{2} = 3 , 12\) kg.m/s
\(\text{v}_{2} = \frac{p_{2}}{m_{2}} = \frac{3 , 12}{0 , 3} = 10 , 4\) m/s
a. Áp suất xe tăng tác dụng lên mặt đường:
\(p_{1} = \frac{F_{1}}{S_{1}} = \frac{P_{1}}{S_{1}} = \frac{m_{1} g}{S_{1}} = \frac{2600.10}{1 , 3} = 20000\) N/m2
b. Áp suất của người tác dụng lên mặt đường: 200 cm2 =0,02m2
\(p_{2} = \frac{F_{2}}{S_{2}} = \frac{P_{2}}{S_{2}} = \frac{m_{2} g}{S_{2}} = \frac{45.10}{200.1 0^{- 4}} = 22500\) N/m2
Áp suất của người tác dụng lên mặt đường là lớn hơn áp suất của xe tăng tác dụng lên mặt đường.
Chọn hệ quy chiếu gắn với mặt đất, chiều dương hướng xuống.
Ở điểm cao nhất của quỹ đạo: \(F_{h t} = P + T\)
\(\Rightarrow T = m \omega^{2} r - m g = 0 , 3. 8^{2} . 0 , 5 - 0 , 3.10 = 6 , 6 N\)
Ở điểm thấp nhất của quỹ đạo: \(F_{h t} = T - P\)
\(\Rightarrow T = m \omega^{2} r + m g = 0 , 3. 8^{2} . 0 , 5 + 0 , 3.10 = 12 , 6 N\)
a. Trường hợp hòn đá bay theo phương ngang, ngược chiều xe với vận tốc \(\text{v}_{2} = 12\) m/s, áp dụng định luật bảo toàn động lượng của hệ theo phương ngang
\(m_{1} \text{v}_{1} + m_{2} \text{v}_{2} = \left(\right. m_{1} + m_{2} \left.\right) \text{v}^{'}\)
\(\Rightarrow \text{v}^{'} = \frac{m_{1} \text{v}_{1} + m_{2} \text{v}_{2}}{m_{1} + m_{2}} = \frac{300.10 + 0 , 5. \left(\right. - 12 \left.\right)}{300 + 0 , 5} = 9 , 96\) m/s
b. Trường hợp hòn đá rơi theo phương thẳng đứng, áp dụng định luật bảo toàn động lượng của hệ theo phương ngang
\(m_{1} \text{v}_{1} = \left(\right. m_{1} + m_{2} \left.\right) \text{v}\)
\(\Rightarrow \text{v} = \frac{m_{1} \text{v}_{1}}{m_{1} + m_{2}} = \frac{300.10}{300 + 0 , 5} = 9 , 98\) m/s