NGUYỄN DANH THÁI

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của NGUYỄN DANH THÁI
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Độ dãn của lò xo khi hệ cân bằng:

Áp dụng định luật Hooke ở trạng thái cân bằng:

\(F_{đ h} = P \Rightarrow k \cdot \Delta l = m \cdot g\)

\(\Delta l=\frac{m \cdot g}{k}=\frac{0 , 5 \cdot9 , 8}{100}=\frac{4 , 9}{100}=0,049\text{m}=4,9\text{cm}\)

b. Lò xo có độ dãn cực đại là 10 cm → biên độ là phần dao động thêm so với vị trí cân bằng.

\(A=10\text{cm}-4,9\text{cm}=5,1\text{cm}\)

c. Độ dãn tổng cộng:

\(\Delta l=4,9\text{cm}+66\text{cm}=10,9\text{cm}=0,109\text{m}\)

Lực kéo:

\(F=k\cdot\Delta l=100\cdot0,109=10,9\text{N}\)

a. \(r\) = 150 triệu km = 15.\(10^{10}\)  m

\(T_{1}\) = 365,25 ngày

\(\omega_{1} = \frac{2 \pi}{T_{1}} = 2.1 0^{- 7}\) rad/s

\(v_{1} = \omega_{1} \left(\right. r + R \left.\right) = 30001\) m/s

b. \(R\) = 6400 km = 6400.103 m

\(T_{2}\) = 24 giờ

\(\omega_{2} = \frac{2 \pi}{T_{2}} = 7 , 27.1 0^{- 5}\) rad/s

\(v_{2} = \omega_{2} R = 465\) m/s

c. \(R = 6400. cos ⁡ 3 0^{0} = \frac{6400. \sqrt{3}}{2}\) m

\(T_{3}\) = 24 giờ

\(\omega_{3} = \frac{2 \pi}{T_{3}} = 7 , 27.1 0^{- 5}\) rad/s

\(v_{3} = \omega_{3} R = 402\) m/s

a, Coi chuyển động của vật là hệ kín

Áp dụng định luật bảo toàn động lượng ta có:

m1.v1+m2.v2=(m1+m2).V

<=>0,5.4+0,3v2=0,8.3

=>v2=4/3

b, Sau va chạm chúng dính vào nhau và chuyển động động với vận tốc \(\text{v}\) = 3 m/s theo hướng vuông góc với hướng chuyển động ban đầu của viên bi 1.

vì sau va chạm chúng vuông góc nên ta có thể áp dụng quy tắc hình bình hành :

 \(p_{2} = \sqrt{p^{2} + p_{1}^{2}}\)

\(p = \left(\right. m_{1} + m_{2} \left.\right) \text{v} = \left(\right. 0 , 5 + 0 , 3 \left.\right) . 3 = 2 , 4\) kg.m/s

\(p_{1} = m_{1} \text{v}_{1} = 0 , 5.4 = 2\) kg.m/s

p2=3,12 kg.m/s

\(\text{v}_{2} = \frac{p_{2}}{m_{2}} = \frac{3 , 12}{0 , 3} = 10 , 4\) m/s