Đỗ Long Nhật

Giới thiệu về bản thân

đẹp trai
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)

\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)

\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)

\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)

\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)

\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)

\(\left(\frac27\cdot\frac14-\frac13\cdot\frac27\right):\left(\frac27\cdot\frac39-\frac27\cdot\frac25\right)=\frac27\left(\frac14-\frac13\right):\frac27\left(\frac39-\frac25\right)=\frac54,B\frac34\frac{\left(\frac15-\frac27-\frac13+\frac27\right)}{\frac15\left(\frac27+\frac13\right)-\frac13\left(\frac27+\frac13\right)}=\frac{\frac34\left(\frac15-\frac13\right)}{\left(\frac15-\frac13\right)\left(\frac27+\frac13\right)}=\frac{63}{52}\)

\(\frac23+\frac14+\frac35\) \(-\frac{7}{45}+\frac59\) \(+\frac{1}{12}+\frac{1}{35}\) \(\left(\frac23+\frac14+\frac{1}{12}\right)\) \(+\left(\frac59+\frac{7}{45}\right)\) \(+\frac35+\frac{1}{35}\) \(=1+\frac45+\frac35\) \(+\frac{1}{35}=\) \(\frac{71}{35}\) .b\(\left(5-6-2\right)\) \(+\left(-\frac34\right.\) \(-\frac74+\frac54\) \()+\left(\right.\) \(\frac15+\frac85\) \(-\frac{16}{5})\) \(-\left(3\right.\) \(+\frac54+\frac75)\) \(=-\frac{113}{20}\)

\(\frac35\cdot\frac67+\frac37\cdot\frac35-\frac27\cdot\frac35=\frac35\cdot\left(\frac67+\frac37-\frac27\right)=\frac35,B\) \(\left(-13\cdot\frac25+\frac{-2}{9}\cdot\frac25+\frac25\cdot\frac{11}{9}\right)\cdot\frac52=\left(-13-\frac{-2}{9}+\frac{11}{9}\right)\cdot\frac25\cdot\frac52=-13+\left(\frac{-2}{9}+\frac{11}{9}\right)\cdot1=-13-1\cdot1=-12\) \(,C\left(\frac{-4}{5}+\frac57\right):\frac23+\left(\frac{-1}{5}+\frac27\right):\frac23=\frac{-4}{5}+\frac57\cdot\frac32+\frac{-1}{5}+\frac27\cdot\frac32=\left(\frac{-4}{5}+\frac{-1}{5}\right)\cdot\left(\frac57+\frac27\right)\cdot\frac32=0\) \(,D\frac49:\left(\frac{1}{15}-\frac23\right)+\frac49:\left(\frac{1}{11}-\frac{5}{22}\right)=\frac49:\left(\frac{-3}{2}\right)+\frac49:\left(\frac{-3}{22}\right)=\frac{-20}{24}+\frac{-88}{27}=-4\)

(\(\frac13-\frac85\) \(-\frac17\) )\(+\left(\frac23\right.\) \(+\frac{-7}{15}\) \(+\frac87\) )\(\frac13-\frac85-\frac17+\frac23+\frac{-7}{15}+\frac87=\left(\frac13+\frac23\right)-\left(\frac85-\frac{-7}{15}\right)+\left(\frac17-\frac87\right)=1-1+-1\) \(=-1\).B=(\(0.25-\frac54_{})+\left(\frac35+\frac25\right)-\frac18=\left(\frac14-1-\frac14\right)+1-\frac18=\frac{-1}{8}\)