NGUYỄN TRỌNG NHÂN

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của NGUYỄN TRỌNG NHÂN
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

a: ΔABC vuông cân tại A

mà AM là trung tuyến

nên AM là phân giác của góc BAC

Xét tứ giác AEDF có

góc AED=góc AFD=góc FAE=90 độ

AD là phân giác của góc FAE

=>AEDF là hình vuông

b: AEDF là hình vuông

=>góc AEF=45 độ

=>góc AEF=góc ABC
c) c) Gọi \(O\) là giao của \(A D\) với \(E F\) suy ra \(O E = O D = O F = O A\)

\(\Delta E N F\) vuông tại \(N\) có \(N O\) là đường trung tuyến nên \(N O = E O = F O\)

\(\Delta A N D\) có \(N O\) là đường trung tuyến mà \(N O = \frac{A D}{2}\) suy ra \(\Delta A N D\) vuông tại \(N .\)

=>EF//BC


a: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

=>ADME là hình chữ nhật

b; Xét ΔABC có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét tứ giác AMBI có

D là trung điểm chung của AB và MI

=>AMBI là hình bình hành

mà MA=MB

nên AMBI là hình thoi

c: AMBI là hình vuông

=>góc AMB=90 độ

Xét ΔABC có

AM vừa là đường cao, vừa là trung tuyến

=>ΔABC cân tại A

=>AB=AC

d) d) Giả sử \(A M\) cắt \(P Q\) tại \(F\) và \(P Q\) cắt \(A H\) tại \(O\).

Khi đó \(\Delta O A Q\) có \(O A = O Q\) nên \(\&\text{nbsp}; \Delta O A Q\) cân tại \(O\) suy ra \(\hat{Q_{1}} = \hat{O A Q}\)

\(\Delta A M C\) cân tại \(M\) suy ra \(\hat{A_{1}} = \hat{C}\)

Do đó, \(\hat{A_{1}} + \hat{Q_{1}} = \hat{C} + \hat{O A Q} = 90^{\circ}\)

Suy ra \(\Delta F A Q\) vuông tại \(F\) hay \(A M ⊥ P Q .\)

a: Xét tứ giác ABCD có

N là trung điểm chung của AC và BD

=>ABCD là hình bình hành

b: Ta có: ABCD là hình bình hành

=>AD//BC

Ta có: AD//BC

AP\(\bot\)BC

Do đó: AP\(\bot\)AD

Ta có: AP\(\bot\)AD

CQ\(\bot\)AD

Do đó: AP//CQ

ta có: AD//CB

\(Q \in\)AD

P\(\in\)BC

Do đó: AQ//CP

Xét tứ giác APCQ có

AP//CQ

AQ//CP

Do đó: APCQ là hình bình hành

=>AC cắt PQ tại trung điểm của mỗi đường

mà N là trung điểm của AC

nên N là trung điểm của PQ

=>P,N,Q thẳng hàng

c: Để hình bình hành ABCD trở thành hình vuông thì ABCD vừa là hình chữ nhật vừa là hình thoi(1)

Hình bình hành ABCD trở thành hình chữ nhật khi \(\hat{A B C} = 9 0^{0}\)(2)

Hình bình hành ABCD trở thành hình thoi khi BA=BC(3)

Từ (1),(2),(3) suy ra: góc ABC = 90 độ, BA=BC

a: Xét tứ giác MCDN có

MC//DN

MC=DN

MC=CD

=>MCDN là hình thoi

b: Xét ΔCMD có CM=CD và góc C=60 độ(=góc BAD)

nên ΔCMD đều

=>góc CMD=60 độ

góc BMD+góc CMD=180 độ(kề bù)

=>góc BMD=180-60=120 độ

=>góc BMD=góc B

Xét tứ giác ABMD có

BM//AD

góc ABM=góc BMD

=>ABMD là hình thang cân

=>AM=BD

c: Xét ΔKAD có BM//AD

nên BM/AD=KM/KD=KB/KA

=>KM/KD=KB/KA=1/2

=>Mlà trung điểm của KD, B là trung điểm của KA

Xét ΔKAD có

AM,DB,KN là trung tuyến

=>AM,DB,KN đồng quy

a) Ta có thể chứng minh ΔAOP = ΔBOR bằng cách sử dụng góc vuông và góc đồng quy. Vì hai đường thẳng m và n vuông góc với nhau tại O, nên góc AOP và góc BOR là góc vuông. Đồng thời, ta cũng có góc OPA = góc ORB (do OP và OR là hai cạnh của hình vuông OPRQ). Vì vậy, theo góc đồng quy, ta có ΔAOP = ΔBOR.

b) Vì O là giao điểm của hai đường chéo của hình vuông ABCD, nên ta có OP = OR = OS = OQ.

c) Ta cũng có thể chứng minh PRSQ là hình vuông bằng cách sử dụng góc vuông và góc đồng quy. Vì hai đường thẳng m và n vuông góc với nhau tại O, nên góc PQR và góc PSR là góc vuông. Đồng thời, ta cũng có góc QPR = góc RPS (do PQ và RS là hai cạnh của hình vuông PRSQ). Vì vậy, theo góc đồng quy, ta có PRSQ là hình vuông.

Vậy, ΔAOP = ΔBOR, OP = OR = OS = OQ và PRSQ là hình vuông.

a)

Ta có

IA=IC (gt); IM=IK (gt) => AMCK là hình bình hành (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có

MB=MC (gt); IA=IC (gt) => MI là đường trung bình của tg ABC => MI//AB

Mà \(A B \bot A C\) 

\(\Rightarrow M I \bot A C \Rightarrow M K \bot A C\)

=> AMCK là hình thoi (Hình bình hành có 2 đường chéo vuông góc là hình thoi)

b)

Ta có

MI//AB (cmt) => MK//AB

AK//MC (cạnh đối hbh AMCK) => AK//MB

=> AKMB là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

c)

Để AMCK là hình vuông \(\Rightarrow A M \bot B C\) => AM là đường cao của tg ABC

Mà AM là trung tuyến của tg ABC (gt)

=> ABC cân tại A (Tam giác có đường cao đồng thời là đường trung tuyến là tg cân)

=> Để AMCK là hình vuông thì tg ABC vuông cân tại A

a)  Tam giác ABC vuông cân nên góc B= góc C = 45 độ

Tam giácBHE vuông tại H có góc BEH + góc B = 90 độ

Suy ra góc BEH = 90 độ - 45 độ = 45 độ nên góc B= góc BEH = 45 độ

Vậy tam giác BEH vuông tại H

b) Chứng minh tương tự như câu a ta được tam giác CFG vuông tại G nên GF=GC và HB=HE

Lại có BH=HG=GC suy ra EH=HG=GF và EH//FG ( cùng vuông góc với BC)

Tứ giác EFGH có EH//FG, EH=FG

=>tứ giác EFGH là hình bình hành 

Xét hình bình hành có một góc vuông là góc H nên là hình chữ nhật

Mà hình chữ nhật có hai cạnh kề bằng nhau là EH=HG nên là hình vuông

Vậy EFGH là hình vuông

Do A thuộc tia phân giác của góc OCB nên AC=AB ( Tính chất đường phân giác)
Tứ giác OBAC có 3 vuông và 2 cạnh AC và AB kể nhau và bằng nhau.

Nên OBAC là hình vuông.

a) Do ABCD là hình vuông nên: 

\(A B = B C = C D = A D\) 

Mà: \(\) 
AB=AM+MB

BC=BN+NC

CD=CP+PD

AD=DQ+QA

Lại có: \(A M = B N = C P = D Q\)

\(\Rightarrow M B = N C = P D = Q A \left(\right. d p c m \left.\right)\) 

b) Xét \(\Delta Q A M\) và \(\Delta N C P\) có:

\(\hat{A} = \hat{C} = 9 0^{o} \left(\right. g t \left.\right)\)

\(A M = C P \left(\right. g t \left.\right)\)

\(Q A = N C \left(\right. c m t \left.\right)\)

\(\Rightarrow \Delta Q A M = \Delta N C P \left(\right. c . g . c \left.\right)\) 

c) Xét các tam giác: \(\Delta Q A M , \Delta N C P , \Delta P D Q , \Delta M B N\) ta có:

\(\hat{A} = \hat{B} = \hat{C} = \hat{D} = 9 0^{o} \left(\right. g t \left.\right)\)

\(A M = B N = C P = D Q \left(\right. g t \left.\right)\)

\(M B = N C = P D = Q A \left(\right. c m t \left.\right)\)

\(\Rightarrow \Delta Q A M = \Delta N C P = \Delta P D Q = \Delta M B N \left(\right. c . g . c \left.\right)\) 

\(\Rightarrow M Q = Q P = P N = N M\) (các cạnh tương ứng) 

\(\Rightarrow M N P Q\) là hình thoi (1)

Xét tam giác QAM ta có:

\(\hat{Q M A} + \hat{A Q M} = 18 0^{o} - 9 0^{o} = 9 0^{o}\) 

Mà: \(\Delta Q A M = \Delta M B N \left(\right. c m t \left.\right)\)

\(\Rightarrow \hat{B M N} = \hat{A Q M}\) (hai góc tương ứng) 

\(\Rightarrow \hat{B M N} + \hat{Q M A} = 9 0^{o}\)

Lại có: \(\hat{B M N} + \hat{Q M A} + \hat{N M Q} = 18 0^{o}\)

\(\Rightarrow \hat{N M Q} = 18 0^{o} - 9 0^{o} = 9 0^{o}\) (2) 

Từ (1) và (2) ta có MNPQ là hình vuông

a) Vì ��=2��AB=2BC suy ra ��=��2=��BC= AB/2=AD

ABCD là hình chữ nhật nên AB=DC suy ra 1/2AB=1/2DC do đó AI=DK=AD

Tứ giác AIKD có AI//DK, AI=DK nên tứ giác AIKD là hình bình hành 

Lại có AD=AI nên AIKD là hình thoi

Mà góc IAD= 90 độ do đó AIKD là hình vuông

Vậy tứ giác AIKD là hình vuông

Chứng minh tương tự cho tứ giác BIKC

Vậy tứ gáic BIKC là hình vuông

b) VÌ AIKD là hình vuông nên DI là tia phân giác góc ADK nên góc IDK = 45 độ

Tương tự góc ICK = 45 độ

Tam giác IDC cân có góc DIC = 90 độ nên là tam gaic vuông cân 

Vậy tam giác IDC là tam gáic  vuông cân

c) Vì AIKD, BCKI là các hình vuông nên hai đường chéo bằng nhau và cắt  nhau tại trung điểm mỗi đường nên SI=SK=DI/2 và IR=RK=IC/2

 =>ISKR là hình thoi

Lại có góc DIC= 90 độ nên ISKR là hình vuông

Vậy ISKR là hình vuông