![](https://rs.olm.vn/images/background/bg0.jpg?v=2)
![](https://rs.olm.vn/images/avt/2.png?131708184938)
Lê Song Phương
Giới thiệu về bản thân
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_mam_non.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_tan_binh.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_chuyen_can.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_cao_thu.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_thong_thai.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_dai_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
Đk: \(x\ge-\dfrac{1}{2},x\ne0\)
pt \(\Leftrightarrow\dfrac{1}{x^2}-\dfrac{1}{x}=\sqrt{2x+1}-\sqrt{x+2}\)
\(\Leftrightarrow\dfrac{1-x}{x^2}=\dfrac{2x+1-\left(x+2\right)}{\sqrt{2x+1}+\sqrt{x+2}}\)
\(\Leftrightarrow\dfrac{1-x}{x^2}=\dfrac{x-1}{\sqrt{2x+1}+\sqrt{x+2}}\)
\(\Leftrightarrow\left(x-1\right)\left(\dfrac{1}{\sqrt{2x+1}+\sqrt{x+2}}+\dfrac{1}{x^2}\right)=0\)
\(\Leftrightarrow x=1\) (vì \(\dfrac{1}{\sqrt{2x+1}+\sqrt{x+2}}+\dfrac{1}{x^2}>0\))
Vậy \(S=\left\{1\right\}\)
Ta có:
\(VP=\dfrac{4}{2a+b+c}+\dfrac{4}{2b+a+c}+\dfrac{4}{2c+a+b}\)
\(\le\dfrac{1}{2a}+\dfrac{1}{b+c}+\dfrac{1}{2b}+\dfrac{1}{c+a}+\dfrac{1}{2c}+\dfrac{1}{a+b}\)
\(=\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{4}{b+c}\right)+\dfrac{1}{2b}+\dfrac{1}{4}\left(\dfrac{4}{c+a}\right)+\dfrac{1}{2c}+\dfrac{1}{4}\left(\dfrac{4}{a+b}\right)\)
\(\le\dfrac{1}{2a}+\dfrac{1}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{1}{2b}+\dfrac{1}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)+\dfrac{1}{2c}+\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(=\dfrac{1}{2a}+\dfrac{1}{4b}+\dfrac{1}{4c}+\dfrac{1}{2b}+\dfrac{1}{4c}+\dfrac{1}{4a}+\dfrac{1}{2c}+\dfrac{1}{4a}+\dfrac{1}{4b}\)
\(=\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\)
\(=VT\)
Ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow a=b=c\)
Chú ý: Trong bài ta đã sử dụng bất đẳng thức \(\dfrac{4}{x+y}\le\dfrac{1}{x}+\dfrac{1}{y}\) với \(x,y>0\) hai lần
Ta có \(VT=\dfrac{1}{a}+\dfrac{1}{4b}\)
\(=\dfrac{1}{a}+\dfrac{\dfrac{1}{4}}{b}\)
\(=\dfrac{1^2}{a}+\dfrac{\left(\dfrac{1}{2}\right)^2}{b}\)
\(\ge\dfrac{\left(1+\dfrac{1}{2}\right)^2}{a+b}\) (áp dụng BĐT \(\dfrac{x^2}{m}+\dfrac{y^2}{n}\ge\dfrac{\left(x+y\right)^2}{m+n}\))
\(=\dfrac{\left(\dfrac{3}{2}\right)^2}{1}\) (vì \(a+b=1\))
\(=\dfrac{9}{4}\)
Ta có đpcm. Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}a+b=1\\\dfrac{1}{a}=\dfrac{1}{2b}\end{matrix}\right.\) \(\Leftrightarrow\left(a,b\right)=\left(\dfrac{2}{3},\dfrac{1}{3}\right)\)