

Lê Song Phương
Giới thiệu về bản thân



































Kẻ đường cao BD của tam giác ABC \(\left(D\in AC\right)\)
Khi đó \(AD=AB.cosA=c.cosA\)
\(\Rightarrow CD=AC-AD=b-c.cosA\)
Mặt khác, \(BD=BA.sinA=c\sqrt{1-cos^2A}\)
Tam giác BCD vuông tại D nên:
\(a^2=BC^2=DB^2+DC^2\)
\(=\left(b-c.cosA\right)^2+\left(c\sqrt{1-cos^2A}\right)^2\)
\(=b^2-2bc.cosA+c^2.cos^2A+c^2\left(1-cos^2A\right)\)
\(=b^2+c^2-2bc.cosA\)
Vậy đẳng thức được chứng minh.
Kẻ đường cao AH của tam giác ABC \(\left(H\in BC\right)\). Gọi F là trung điểm của BC.
Khi đó tam giác GBC vuông tại G có trung tuyến GF nên \(GF=\dfrac{1}{2}BC\)
Lại có G là trọng tâm tam giác ABC \(\Rightarrow GF=\dfrac{1}{3}AF\)
\(\Rightarrow\dfrac{1}{2}BC=\dfrac{1}{3}AF\)
\(\Rightarrow\dfrac{AF}{BC}=\dfrac{3}{2}\)
\(\Rightarrow BC=\dfrac{2}{3}AF\) (1)
Mặt khác, tam giác ABH vuông tại H \(\Rightarrow cotB=\dfrac{BH}{AH}\)
Tương tự, \(cotC=\dfrac{CH}{AH}\)
\(\Rightarrow cotB+cotC=\dfrac{BH}{AH}+\dfrac{CH}{AH}=\dfrac{BC}{AH}=\dfrac{\dfrac{2}{3}AF}{AH}\) \(\ge\dfrac{\dfrac{2}{3}AH}{AH}=\dfrac{2}{3}\)
(vì AH, AF là đường vuông góc và đường xiên kẻ từ A đến BC)
Dấu "=" xảy ra \(\Leftrightarrow AH=AF\), nghĩa là đường cao bằng đường trung tuyến ứng với đỉnh A \(\Leftrightarrow\Delta ABC\) cân tại A.
Ta có đpcm.
BBT của \(f\left(x\right)\):
\(D=ℝ\)
Có \(y'=x^2-2x-m\)
Xét \(y'=0\)
\(\Leftrightarrow x^2-2x-m=0\)
\(\Leftrightarrow m=x^2-2x\) (1)
YCBT \(\Leftrightarrow\) (1) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\)
Đặt \(f\left(x\right)=x^2-2x\). Khi đó \(f'\left(x\right)=2x-2\)
\(f'\left(x\right)=0\Leftrightarrow x=1\)
Lập BBT, ta thấy để \(m=f\left(x\right)\) có 2 nghiệm phân biệt thuộc \(\left(3;4\right)\) thì \(3< m< 8\)
Khi đó \(m\in\left\{4;5;6;7\right\}\), suy ra có 4 giá trị nguyên của m thỏa mãn ycbt.
-> Chọn B.
a) Ta có MH//AC \(\left(\perp AB\right)\) nên \(\Delta BMH\sim\Delta BAC\)
\(\Rightarrow\dfrac{BM}{BA}=\dfrac{MH}{AC}\) \(\Rightarrow BM.AC=BA.MH\)
Tam giác ABH vuông tại H có đường cao HM
\(BA.MH=HB.HA\)
Tương tự, ta có: \(CN.AB=HC.HA\)
Cộng theo vế 2 hệ thức trên, ta được:
\(BA.MH+CN.AB=HB.HA+HC.HA=HA\left(HB+HC\right)=AH.BC\)
Ta có đpcm.
b) Tam giác ABH vuông tại H có đường cao HM nên \(AM.BM=MH^2\).
Tương tự, ta có \(AN.CN=HN^2\)
Do đó \(VT=AM.BM+AN.CN=MH^2+HN^2\)
Dễ thấy tứ giác AMHN là hình chữ nhật nên \(MH^2+HN^2=MN^2=AH^2\)
Tam giác ABC vuông tại A có đường cao AH nên \(AH^2=BH.CH\)
Từ đó suy ra \(VT=BH.CH=VP\)
Vậy đẳng thức được chứng minh.
c) Xét hệ trục tọa độ Axy với A là gốc tọa độ, \(Ax\equiv AC,Ay\equiv AB\)
Khi đó đặt \(B\left(0;b\right)\), \(C\left(c;0\right)\)
Khi đó phương trình đường thẳng \(BC:y=-\dfrac{b}{c}x+b\)
\(\Rightarrow\) Phương trình đường thẳng \(AH:y=\dfrac{c}{b}x\)
Khi đó hoành độ của điểm H chính là nghiệm của pt hoành độ giao điểm của AH và BC: \(\dfrac{c}{b}x_0=-\dfrac{b}{c}x_0+b\)
\(\Leftrightarrow\left(\dfrac{c}{b}+\dfrac{b}{c}\right)x_0=b\)
\(\Leftrightarrow\left(\dfrac{c^2+b^2}{bc}\right)x_0=b\)
\(\Leftrightarrow x_0=\dfrac{cb^2}{b^2+c^2}\)
\(\Rightarrow y_0=\dfrac{c}{b}x_0=\dfrac{c}{b}.\dfrac{cb^2}{b^2+c^2}=\dfrac{bc^2}{b^2+c^2}\)
Vậy \(H\left(\dfrac{cb^2}{b^2+c^2},\dfrac{bc^2}{b^2+c^2}\right)\)
Vì M là hình chiếu của H lên trục Oy \(\Rightarrow M\left(0,\dfrac{bc^2}{b^2+c^2}\right)\)
Tương tự \(\Rightarrow N\left(\dfrac{cb^2}{b^2+c^2},0\right)\)
Khi đó \(BM=BA-MA=b-\dfrac{bc^2}{b^2+c^2}=\dfrac{b^3+bc^2-bc^2}{b^2+c^2}=\dfrac{b^3}{b^2+c^2}\)
\(CN=CA-NA=c-\dfrac{cb^2}{b^2+c^2}=\dfrac{cb^2+c^3-cb^2}{b^2+c^2}=\dfrac{c^3}{b^2+c^2}\)
\(\Rightarrow\dfrac{BM}{CN}=\dfrac{\dfrac{b^3}{b^2+c^2}}{\dfrac{c^3}{b^2+c^2}}=\dfrac{b^3}{c^3}=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{AB}{AC}\right)^3\)
\(\Rightarrow\sqrt[3]{\dfrac{MB}{NC}}=\dfrac{AB}{AC}\) (đpcm)
Giả sử tồn tại một số tự nhiên \(a\) để với mọi số tự nhiên \(b\), \(ab+4\) không phải là số chính phương. Điều này có nghĩa là phương trình \(ab+4=k^2\left(k\inℕ,k\ge2\right)\) không có nghiệm tự nhiên \(\left(b,k\right)\).
\(\Leftrightarrow b=\dfrac{k^2-4}{a}\) không có nghiêm tự nhiên.
Điều này tương đương với việc không tồn tại số tự nhiên \(k\) nào để \(k^2-4⋮a\). (*)
Ta sẽ chứng minh (*) vô lý.
Thật vậy, nếu \(a\ge4\) thì tồn tại số tự nhiên \(k=am+2\left(m\inℕ\right)\) thỏa mãn:
\(k^2-4=\left(am+2\right)^2-4=a^2m^2+4am+4-4=a\left(am^2+4m\right)⋮a\)
Nếu \(a=3\) thì tồn tại số \(k=3n+1\left(n\inℕ\right)\) để:
\(k^2-4=\left(3n+1\right)^2-4=9n^2+6n+1-4=9n^2+6n-3⋮3\)
Nếu \(a=2\) thì chỉ cần chọn \(k\) chẵn là xong.
Như vậy ta đã chỉ ra rằng (*) vô lý. Do đó điều ta giả sử ban đầu là sai.
Vậy ta có đpcm.
Tam giác ACE đều \(\Rightarrow AE=AC\) và \(\widehat{CAE}=60^o\)
Tam giác ABC vuông cân tại A \(\Rightarrow AB=AC\) và \(\widehat{BAC}=90^o\)
Từ đó \(\Rightarrow AE=AB\) \(\Rightarrow\Delta ABE\) cân tại A
Đồng thời \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=90^o+60^o=150^o\)
\(\Rightarrow\widehat{ABE}=\dfrac{180^o-\widehat{BAE}}{2}=\dfrac{180^o-150^o}{2}=15^o\)
Mặt khác, tam giác ADB cân tại và \(\widehat{ADB}=150^o\) nên tam giác ADB chí có thể cân tại D (vì nếu cân tại điểm khác thì khi đó trong tam giác ADB sẽ có 2 góc bằng \(150^o\), vô lý). Khi đó \(\widehat{ABD}=15^o\)
Trên cùng 1 nửa mặt phẳng bờ là đường thẳng chứa tia BA, có \(\widehat{ABD}=\widehat{ABE}=15^o\) nên B, D, E thẳng hàng. (đpcm)