![](https://rs.olm.vn/images/background/bg0.jpg?v=2)
![](https://rs.olm.vn/images/avt/2.png?131708184938)
Lê Song Phương
Giới thiệu về bản thân
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_mam_non.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_tan_binh.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_chuyen_can.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_cao_thu.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_thong_thai.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
![xếp hạng xếp hạng](https://rs.olm.vn/images/medal_dai_kien_tuong.png)
![ngôi sao 1 Ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 2 ngôi sao 2](https://rs.olm.vn/images/medal_ngoi_sao.png)
![ngôi sao 3 ngôi sao 1](https://rs.olm.vn/images/medal_ngoi_sao.png)
![sao chiến thắng Sao chiến thắng](https://rs.olm.vn/images/medal_win_1.png)
\(\left(2-x\right)^{24}=\left(x-2\right)^{24}=\sum\limits^{24}_{k=0}C^k_{24}.x^k.\left(-2\right)^{24-k}\)
b) Hệ số tổng quát là \(a_k=C^k_{24}\left(-2\right)^{24-k}\) \(\Rightarrow a_9=C^9_{24}.\left(-2\right)^{24-9}=-2^{15}.C^9_{24}\) -> Sai
c) SHTQ: \(T_k=C^k_{24}.x^k.\left(-2\right)^{24-k}\)
\(x^{20}\Rightarrow k=20\) \(\Rightarrow T_4=C^{20}_{24}.x^{20}\left(-2\right)^{24-20}=170016x^{20}\) -> Sai
a. Số các số như vậy chỉ có \(6.7^3\) do chữ số đầu tiên phải khác 0 -> Sai
b. Gọi số có 4 chữ số thỏa mãn trên là \(\overline{abcd}\) với \(a\ge3\) và a, b, c, d phân biệt. Khi đó số các số như vậy là \(4.6.5.4=480\) -> Đúng.
c. Gọi số thỏa mãn là \(\overline{abc}\) với a, b, c phân biệt và c chẵn. Khi đó \(c\in\left\{0,2,4,6\right\}\)
Xét \(c=0\) thì có \(6.5=30\) số
Xét \(c\in\left\{2,4,6\right\}\) thì có \(3.5.5=75\) số
Vậy có tất cả \(30+75=105\) số thỏa mãn -> Sai.
a. Đúng (có nhóm -CHO)
b. Sai (Formol là chất cấm dùng trong bảo quản thực phẩm, hoa quả vì đây là chất rất độc, gây hại cho cơ thể con người chỉ với 1 lượng nhỏ)
c. Đúng
d. Đúng (aldehyde nói chung đều tham gia phản ứng tráng bạc với AgNO3/ NH3 để tạo kết tủa Ag màu tráng bạc)
Kết quả xấp xỉ \(0,34116\) nhé.
Ta có \(\left|\Omega\right|=C^5_{52}\)
Gọi A là biến cố: "Có ít nhất 1 quân át." Khi đó xét biến cố \(\overline{A}:\) "Không có 1 quân át nào."
Khi đó \(\left|\overline{A}\right|=C^5_{48}\) \(\Rightarrow P\left(\overline{A}\right)=\dfrac{C^5_{48}}{C^5_{52}}\) \(\Rightarrow P\left(A\right)=1-\dfrac{C^5_{48}}{C^5_{52}}\)
a) Số học sinh thích học ít nhất một trong 2 môn là \(38-3=35\)
\(\Rightarrow P=\dfrac{35}{38}\)
b) Gọi M, L lần lượt là tập hợp các học sinh thích học toán và văn.
\(\Rightarrow\left|M\cap L\right|=\left|M\right|+\left|L\right|-\left|M\cup L\right|\) \(=25+20-35=10\)
\(\Rightarrow P=\dfrac{10}{38}=\dfrac{5}{19}\)
a) \(P=\dfrac{4}{10}.\dfrac{5}{12}=\dfrac{1}{6}\)
(xác suất để lấy được bi đỏ ở túi 1 là \(\dfrac{4}{10}\) còn túi 2 là \(\dfrac{5}{12}\))
b) Cách 1: \(P=\dfrac{4}{10}.\dfrac{7}{12}+\dfrac{6}{10}.\dfrac{5}{12}=\dfrac{29}{60}\)
(chia ra làm 2 TH: TH1: lấy được bi đỏ ở túi 1 và bi xanh ở túi 2; TH2: lấy được bi xanh ở túi 1 và bi đỏ ở túi 2)
Cách 2: Xác suất lấy được 2 bi xanh là \(\dfrac{6}{10}.\dfrac{7}{12}=\dfrac{7}{20}\)
\(\Rightarrow P=1-\dfrac{1}{6}-\dfrac{7}{20}=\dfrac{29}{60}\)
Cho \(x=-4\), ta có \(-5f\left(-4\right)=0\) \(\Leftrightarrow f\left(-4\right)=0\)
Cho \(x=1\), ta có \(0=5f\left(-7\right)\) \(\Leftrightarrow f\left(-7\right)=0\)
Do đó \(-4,-7\) là 2 nghiệm của \(f\left(x\right)\). Đặt \(f\left(x\right)=\left(x+4\right)\left(x+7\right)g\left(x\right)\).
Khi đó điều kiện đề bài \(\Rightarrow\left(x-1\right)\left(x+4\right)\left(x+7\right)g\left(x\right)=\left(x+4\right)\left(x-4\right)\left(x-1\right)g\left(x-8\right)\)
Cho \(x=4\) thì ta có \(3.8.11g\left(4\right)=0\) \(\Leftrightarrow g\left(4\right)=0\)
Cho \(x=12\) thì ta có \(11.16.19.g\left(12\right)=16.8.11.g\left(4\right)=0\) (do \(g\left(4\right)=0\)) \(\Leftrightarrow g\left(12\right)=0\)
Vậy \(4,12\) là 2 nghiệm của \(g\left(x\right)\) \(\Rightarrow g\left(x\right)=\left(x-4\right)\left(x-12\right)h\left(x\right)\)
Vậy \(f\left(x\right)=\left(x+4\right)\left(x+7\right)\left(x-4\right)\left(x-12\right)h\left(x\right)\). Do đó 4 nghiệm của \(f\left(x\right)\) là \(-7,-4,4,12\)
p v q: "23 là số nguyên tố hoặc 23 chia hết cho 2."
p ^ q: "23 là số nguyên tố và 23 chia hết cho 2."
\(p\Rightarrow q\): "Nếu 23 là số nguyên tố thì 23 chia hết cho 2."
\(p\Leftrightarrow q\): "23 là số nguyên tố khi và chỉ khi 23 chia hết cho 2."
a) Ta lập bảng chân trị:
p | q | p v q | p ^ q | \(p\Rightarrow q\) | \(p\Leftrightarrow q\) |
1 | 0 | 1 | 0 | 0 | 0 |
b) Bạn bổ sung đề bài nhé.