Lê Song Phương

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lê Song Phương
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Gọi \(\left(d'\right):x+2y-3=0\) \(\Rightarrow\) VTPT \(\overrightarrow{n_{d'}}=\left(1;2\right)\) 

Gọi \(d\) là tiếp tuyến cần tìm \(\Rightarrow\) VTPT \(\overrightarrow{n_d}=\left(-2;1\right)\)

\(\Rightarrow\left(d\right):-2x+y+c=0\) \(\left(c\inℝ\right)\)

\(\Leftrightarrow y=2x-c\)

Có \(y'=4x^3-2x\). Khi đó cho \(y'\left(x_0\right)=4x_0^3-2x_0=2\)

\(\Leftrightarrow2x_0^3-x_0-1=0\)

\(\Leftrightarrow\left(x_0-1\right)\left(2x_0^2+2x_0+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x_0=1\\2x_0^2+2x_0+1=0\left(vôlý\right)\end{matrix}\right.\)

 Khi đó pttt cần tìm là \(\left(d\right):y=f'\left(x_0\right)\left(x-x_0\right)+f\left(x_0\right)\)

\(\Leftrightarrow y=f'\left(1\right)\left(x-1\right)+f\left(1\right)\)

\(\Leftrightarrow y=2\left(x-1\right)+3\)

\(\Leftrightarrow y=2x+1\)

Tập xác định \(D=ℝ\backslash\left\{2\right\}\)

TCĐ: \(x=2\)

Có \(\dfrac{x^2-x-1}{x-2}=\dfrac{x^2-x-2+1}{x-2}=\dfrac{\left(x+1\right)\left(x-2\right)+1}{x-2}=\left(x+1\right)+\dfrac{1}{x-2}\)

nên đồ thị hàm số có tiệm cận xiên là đường \(y=x+1\)

Có \(y'=\dfrac{x^2-4x+3}{\left(x-2\right)^2}\)

\(y'=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

BBT

 

\(f'\left(x0\right)\) là gì thế bạn?

đk: \(0\le x,y\le2\)

Ta có \(x^2+y^2=4\Rightarrow y=\sqrt{4-x^2}\left(y\ge0\right)\)

Do đó \(M=2x+y=\sqrt{4x^2}+\sqrt{4-x^2}\)

\(\ge\sqrt{4x^2+4-x^2}=\sqrt{3x^2+4}\ge2\)

ĐTXR \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}4x^2=0\\4-x^2=0\end{matrix}\right.\\x=0\end{matrix}\right.\) \(\Leftrightarrow x=0\Rightarrow y=2\)

Vậy GTNN của M là 2 khi \(x=0,y=2\)

\(x+2xy+3xyz=47\)

\(\Leftrightarrow x\left(1+2y+3yz\right)=47\)

TH1: \(\left\{{}\begin{matrix}x=1\\1+2y+3yz=47\end{matrix}\right.\) 

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y\left(2+3z\right)=46\end{matrix}\right.\)

 TH1.1: \(\left\{{}\begin{matrix}y=1\\2+3z=46\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=1\\z=\dfrac{44}{3}\left(loại\right)\end{matrix}\right.\)

 TH1.2: \(\left\{{}\begin{matrix}y=2\\2+3z=23\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=2\\z=7\end{matrix}\right.\) (nhận)

 Vì \(z\inℕ^∗\) nên \(2+3z>2\). Do đó \(y< 23\) nên ta không xét các TH \(y=23,y=46\)

 TH2: \(\left\{{}\begin{matrix}x=47\\y\left(2+3z\right)=1\end{matrix}\right.\). Khi đó \(y=2+3z=1\) \(\Rightarrow z=\dfrac{-1}{3}\), vô lý.

 Vậy có một bộ số (x, y, z) duy nhất thỏa ycbt là \(\left(1,2,7\right)\)

Vì \(x_1,x_2\) là 2 nghiệm của pt \(x^2-x-1=0\) nên:

\(x_1^2-x_1-1=x_2^2-x_2-1=0\)

Đồng thời, theo định lý Vi-ét, ta có:

\(x_1+x_2=1;x_1x_2=-1\)

Do đó \(B=\left(x_1^4-x_1^2\right)+x_2^2-x_1\)

\(B=x_1^2\left(x_1^2-1\right)+x_2^2-x_1\)

\(B=\left(x_1+1\right)x_1+x_2^2-x_1\)

\(B=x_1^2+x_2^2\)

\(B=\left(x_1+x_2\right)^2-2x_1x_2\)

\(B=1^2-2\left(-1\right)\)

\(B=3\)

 Gọi \(P_i\) là biến cố: "Rút được tấm thẻ ghi số \(i\)." với \(5\le i\le8\)

 Theo đề bài, ta có: \(P_7=3P_4;P_5=4P_7;P_5=2P_8\). Khi đó \(P_5=12P_4,P_8=6P_4\)

 Vì \(P_4\cup P_5\cup P_7\cup P_8=\Omega\) và \(P_5,P_6,P_7,P_8\) độc lập từng đôi nên \(P_4+P_5+P_7+P_8=1\)

 Do đó \(P_4+12P_4+2P_4+6P_4=1\) \(\Leftrightarrow P_4=\dfrac{1}{21}\)

 \(\Rightarrow P_5=\dfrac{12}{21};P_8=\dfrac{6}{21}\)

 \(\Rightarrow P=P_5+P_8=\dfrac{18}{21}=\dfrac{6}{7}\) (P là xác suất cần tìm)

 

 Mình tóm tắt thôi nhé, tại bài này cũng khá dài.

 a) \(\widehat{AEH}+\widehat{AFH}=90^o+90^o=180^o\) nên tứ giác AEHF nội tiếp

Hơn nữa \(\widehat{ADB}=\widehat{AEB}=90^o\) nên tứ giác AEDB nội tiếp \(\Rightarrow\widehat{DAE}=\widehat{DBE}\) hay \(\widehat{EAH}=\widehat{EBC}\)

 b) Dễ chứng minh được: \(\Delta AFH\sim\Delta ADB\Rightarrow AF.AB=AH.AD\)

 Mặt khác, \(\widehat{SAF}=\widehat{ACB}\) (góc tạo bởi tiếp tuyến và dây cung và góc nội tiếp cùng chắn cung đó) và \(\widehat{ACB}=\widehat{AFE}\) (\(\Delta AEF\sim\Delta ABC\)) nên \(\widehat{SAF}=\widehat{AFE}\) \(\Rightarrow\) SA//EF. Mà \(SA\perp AO\) nên \(EF\perp AO\).

 Do đó, dễ chứng minh rằng \(\Delta AFM\sim\Delta AKB\left(g.g\right)\Rightarrow AF.AB=AM.AK\)

 Từ đó suy ra \(AH.AD=AM.AK\Rightarrow\Delta AHM\sim\Delta AKD\)

 Lại có tứ giác QDNK nội tiếp ( \(\widehat{QDN}=\widehat{QKN}=90^o\)) nên \(\widehat{AQN}=\widehat{AKD}\)  \(\Rightarrow\Delta AKD\sim\Delta AQN\)

 Do đó \(\Delta AHM\sim\Delta AQN\) \(\Rightarrow\widehat{AHM}=\widehat{AQN}\) \(\Rightarrow\) QN//HM (2 góc đồng vị bằng nhau)

 c) Gọi J là tâm đường tròn (AH)

Dễ chứng minh được \(\Delta FAH\sim\Delta FCB\) \(\Rightarrow\Delta FJA\sim\Delta FIC\)

 \(\Rightarrow\widehat{JFA}=\widehat{IFC}\)

 Mà \(\widehat{JFA}+\widehat{JFC}=90^o\) nên \(\widehat{IFC}+\widehat{JFC}=90^o\) hay \(\widehat{JFI}=90^o\) 

 \(\Rightarrow\) IF là tiếp tuyến của (J) tại F.

 Tương tự, IE là tiếp tuyến của (J) tại E, do đó \(IJ\perp EF\) Mà EF//SA (cmt) \(\Rightarrow SA\perp IJ\) 

 Khi đó tam giác ASI có các đường cao AD, IJ cắt nhau tại J nên J là trực tâm tam giác ASI \(\Rightarrow SJ\perp AI\) hay \(SJ\perp AP\)

 Lại có \(JA=JP\) nên JS là trung trực của AP \(\Rightarrow SA=SP\) (đpcm)

Phương trình hoành độ giao điểm của (d) và (d') là:

\(x+m+1=-x+3m-1\)

\(\Leftrightarrow2x=2m-2\)

\(\Leftrightarrow x=m-1\)

\(\Rightarrow y=x+m+1=m-1+m+1=2m\)

Vậy (d) cắt (d') tại điểm \(A\left(m-1,2m\right)\)

Để A thuộc \(\left(d_0\right):y=3x-1\) thì \(2m=3\left(m-1\right)-1\) 

\(\Leftrightarrow2m=3m-3-1\)

\(\Leftrightarrow m=4\)

Vậy \(m=4\)

 Có \(y'=\dfrac{5x^2+2mx-3m+5}{\left(5x+m\right)^2}\)

 Để hàm số đã cho nghịch biến trên \(\left(-3,1\right)\) thì 2 điều kiện sau đồng thời phải được thỏa mãn:

 ĐK 1: \(5x^2+2mx-3m+5\le0,\forall x\in\left(-3,1\right)\)

 \(\Leftrightarrow\left(2x-3\right)m\le-5x^2-5,\forall x\in\left(-3;1\right)\)

 \(\Leftrightarrow m\ge\dfrac{-5x^2-5}{2x-3},\forall x\in\left(-3;1\right)\)

 \(\Leftrightarrow m\ge\max\limits_{\left(-3;1\right)}\left(\dfrac{-5x^2-5}{2x-3}\right)\)

 Xét \(f\left(x\right)=\dfrac{-5x^2-5}{2x-3}\) trên \(\left(-3;1\right)\)

 Ta có \(f'\left(x\right)=\dfrac{-10x^2+30x+10}{\left(2x-3\right)^2}\)

 \(f'\left(x\right)=0\Leftrightarrow-10x^2+30x+10=0\) \(\Leftrightarrow x^2-3x-1=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{13}}{2}\left(loại\right)\\x=\dfrac{3-\sqrt{13}}{2}\left(nhận\right)\end{matrix}\right.\)

 BBT:

Dựa vào BBT, ta thấy \(\max\limits_{\left(-3;1\right)}f\left(x\right)=10\). Do vậy \(m\ge10\)

 ĐK 2: phương trình \(5x+m=0\Leftrightarrow m=-5x\) vô nghiệm trên \(\left(-3,1\right)\)

 Khi đó xét \(g\left(x\right)=-5x\), hiển hiên \(g\left(x\right)\) nghịch biến trên \(\left(-3,1\right)\)

 \(\Rightarrow g\left(1\right)< g\left(x\right)< g\left(-3\right)\) \(\Leftrightarrow-5< g\left(x\right)< 15\)

 Vậy \(\left[{}\begin{matrix}m\le-5\\m\ge15\end{matrix}\right.\)

 Kết hợp với ĐK 1, ta có \(m\ge15\)

 Mà \(m\inℤ^+,m\le2024\) nên \(m\in\left\{15,16,17,...,2024\right\}\)

 \(\Rightarrow\) Có tất cả \(2024-15+1=2010\) giá trị m thỏa ycbt.