Lê Song Phương

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lê Song Phương
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Theo đề bài, ta có \(\overline{qr}+2\overline{ppp}=2022\) 

\(\Leftrightarrow\overline{ppp}=\dfrac{2022-\overline{qr}}{2}\) \(\ge\dfrac{2022-99}{2}=961,5\) hay \(\overline{ppp}\ge962\)

Do đó \(\overline{ppp}=999\)

Khi đó \(\overline{qr}=2022-2\overline{ppp}=2022-2.999=24\)

Vậy \(p=9,q=2,r=4\)

 Số này thậm chí còn không chia hết cho 2 thì làm sao mà chia hết cho 6 được? Bạn xem lại đề nhé.

 Ý của đề bài là nếu có 4 số lẻ \(a,b,c,d\) mà \(a+b+c+d=202\) thì \(ƯCLN\left(a,b,c,d\right)=1\). Còn cái mà bạn Tú phản hồi là lấy VD \(3+9+93+97=202\) mà \(ƯCLN\left(3,9\right)\ne1\) thì cái đấy chỉ là ƯCLN của 2 trong 4 số thôi nên đề bài vẫn đúng nhé.

 Còn bài giải như sau: Gọi \(ƯCLN\left(a,b,c,d\right)=k\) (\(k\inℕ^∗\) và k lẻ)

 Khi đó \(\left\{{}\begin{matrix}a=xk\\b=yk\\c=zk\\d=tk\end{matrix}\right.\) với \(x,y,z,t\) là các số tự nhiên khác 0 và nguyên tố cùng nhau.

 Như vậy nếu \(a+b+c+d=202\) thì \(xk+yk+zk+tk=202\) hay \(x+y+z+t=\dfrac{202}{k}\). Khi đó \(202⋮k\) \(\Rightarrow k\in\left\{1;2;101;202\right\}\)

 Do \(x,y,z,t\ge1\) nên \(x+y+z+t\ge4\). Điều này có nghĩa là \(\dfrac{202}{k}\ge4\) hay \(k\le50\). Do đó \(k=1\) hoặc \(k=2\). Tuy nhiên, vì \(k\) lẻ nên giá trị duy nhất có thể của \(k\) là \(k=1\)

 Khi đó \(a=x;b=y;c=z;d=t\), dẫn đến:

 \(ƯCLN\left(a,b,c,d\right)=ƯCLN\left(x,y,z,t\right)=1\)

 Ta có đpcm.

 Ta có \(x+y+xy=3\Leftrightarrow-xy=x+y-3\). Khi đó \(P=\dfrac{3}{x+y}+x+y-3\)

 Đặt \(x+y=t\left(t>0\right)\). Khi đó: \(P=\dfrac{3}{t}+t-3\)

 Lại có  \(xy\le\dfrac{\left(x+y\right)^2}{4}\) \(\Leftrightarrow3=x+y+xy\le\left(x+y\right)+\dfrac{\left(x+y\right)^2}{4}\) \(=t+\dfrac{t^2}{4}\)

 \(\Leftrightarrow t^2+4t\ge12\) \(\Leftrightarrow t\ge2\)

 Khi đó \(P=\dfrac{3}{t}+t-3=\dfrac{3}{t}+\dfrac{3}{4}t+\dfrac{t}{4}-3\) 

\(\ge2\sqrt{\dfrac{3}{t}.\dfrac{3}{4}t}+\dfrac{2}{4}-3\) (chú ý rằng \(t\ge2\)

\(=2.\dfrac{3}{2}+\dfrac{1}{2}-3\)

\(=\dfrac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}t=2\\\dfrac{3}{t}=\dfrac{3}{4}t\end{matrix}\right.\Leftrightarrow t=2\) \(\Leftrightarrow x+y=2\) \(\Rightarrow xy=1\)

\(\Rightarrow x=y=1\)

Vậy \(minP=\dfrac{1}{2}\) khi \(x=y=1\)

\(D=\left[0;2\right]\)

Có \(f'\left(x\right)=\dfrac{-x+1}{\sqrt{2x-x^2}},\forall x\in\left(0;2\right)\)

\(f'\left(x\right)=0\Leftrightarrow x=1\)

Vậy hàm số đã cho đồng biến trên \(\left(0;1\right)\) và nghịch biến trên \(\left(1;2\right)\)

 Xét S là tổng của nghịch đảo tất cả các số trên bảng.

 Do \(c=\dfrac{a\times b}{a+b}\) nên \(\dfrac{1}{c}=\dfrac{a+b}{a\times b}=\dfrac{1}{a}+\dfrac{1}{b}\)

 Vì vậy, khi xóa 2 số \(a,b\) và thay bằng số c thì S không đổi.

 Khi đó, nếu số còn lại trên bảng là \(x\) thì \(\dfrac{1}{x}=\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{9}\) \(=\dfrac{7129}{2520}\) hay \(x=\dfrac{2520}{7129}\)

 Vậy số còn lại trên bảng là \(\dfrac{2520}{7129}\)

 

 Cho \(p=2,p=3\) ta thấy không thỏa mãn.

 Cho \(p=5\) ta thấy thỏa mãn.

 Xét \(p>5\), khi đó \(p⋮̸5\). Khi đó \(p^2\equiv1,4\left[5\right]\) (tính chất của scp)

 Khi \(p^2\equiv1\left[5\right]\) thì \(p^2+1⋮5\), khi \(p^2\equiv4\left[5\right]\) thì \(p^2+6⋮5\) nên 1 trong 2 số này là hợp số, không thỏa mãn.

 Vậy \(p=5\) là snt duy nhất thỏa mãn ycbt.

 

a) Vì \(p\) là snt lớn hơn 3 nên \(p⋮̸3\) \(\Rightarrow p^2\equiv1\left[3\right]\) hay \(p^2-1⋮3\)

b) Theo câu a), ta có \(p^2\equiv q^2\equiv1\left[3\right]\) nên \(p^2-q^2⋮3\)

c) Vì \(p,q\) là các snt lớn hơn 3 nên chúng cũng là các snt lẻ \(\Rightarrow p^2\equiv q^2\equiv1\left[8\right]\)

\(\Rightarrow p^2-q^2⋮8\)

\(n^2+1⋮2n+1\)

\(\Leftrightarrow\exists k\inℕ^∗:n^2+1=k\left(2n+1\right)\)

\(\Leftrightarrow n^2-2kn+1-k=0\)

Có \(\Delta'=\left(-k^2\right)-\left(1-k\right)=k^2+k-1\)

Vì \(n\inℕ^∗\)nên \(\Delta'\) phải là số chính phương 

\(\Leftrightarrow\exists l\inℕ^∗:k^2+k-1=l^2\)

\(\Leftrightarrow4k^2+4k-4=4l^2\)

\(\Leftrightarrow\left(4k^2+4k+1\right)-4l^2=5\)

\(\Leftrightarrow\left(2k+1\right)^2-\left(2l\right)^2=5\)

\(\Leftrightarrow\left(2k+2l+1\right)\left(2k-2l+1\right)=5\)

 Vì \(k,l\inℕ^∗\) và \(2k+2l+1>2k-2l+1>0\) nên ta chỉ có 1 TH duy nhất là \(\left\{{}\begin{matrix}2k+2l+1=5\\2k-2l+1=1\end{matrix}\right.\) \(\Leftrightarrow k=l=1\)

 Khi đó \(n^2+1=2n+1\) 

 \(\Leftrightarrow n^2=2n\)

 \(\Leftrightarrow\left[{}\begin{matrix}n=0\left(loại\right)\\n=2\left(nhận\right)\end{matrix}\right.\)

 Vậy \(n=2\) là số nguyên dương duy nhất thỏa mãn ycbt.

 

\(y=\dfrac{x^2-3x+2}{x+1}\)

Có \(y'=\dfrac{x^2+2x-5}{\left(x+1\right)^2}=\dfrac{x^2+2x+1-6}{\left(x+1\right)^2}=1-\dfrac{6}{\left(x+1\right)^2}\)

Pttt tại \(M\left(x_0;f\left(x_0\right)\right)\) của (C) là:

\(d=f'\left(x_0\right)\left(x-x_0\right)+f\left(x_0\right)\)

Vì \(d//d':y=-5x-2\) nên \(f'\left(x_0\right)=-5\)

\(\Leftrightarrow1-\dfrac{6}{\left(x_0+1\right)^2}=-5\)

\(\Leftrightarrow\dfrac{6}{\left(x_0+1\right)^2}=6\)

\(\Leftrightarrow\left(x_0+1\right)^2=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x_0=0\\x_0=-2\end{matrix}\right.\)

Nếu \(x_0=0\) thì pttt là \(\left(d\right):y=f'\left(0\right)\left(x-0\right)+f\left(0\right)\) 

\(\Leftrightarrow y=-5x+2\)

Nếu \(x_0=-2\) thì pttt là \(\left(d\right):y=f'\left(-2\right)\left(x+2\right)+f\left(-2\right)\)

\(\Leftrightarrow y=-5\left(x+2\right)-12\) \(=-5x-22\)

Vậy có 2 tt là \(\left(d_1\right):y=-5x+2\) và \(\left(d_2\right):y=-5x-22\)