Lê Song Phương

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Lê Song Phương
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

 câu a ý 2:

 Gọi U là giao điểm của EF và BC, P là trung điểm BC, X là điểm chính giữa cung BC không chứa D của (O).

 Có \(\widehat{XIB}=\widehat{IAB}+\widehat{IBA}=\widehat{XCB}+\widehat{IBC}=\widehat{XBC}+\widehat{IBC}=\widehat{XBI}\) nên tam giác XBI cân tại X \(\Rightarrow XB=XI\)

 Tương tự, ta cũng có \(XB=XC=XI\) nên X là tâm (IBC)

 Dễ thấy \(\widehat{XBD}=\widehat{XCD}=90^o\) nên XB, XC là tiếp tuyến tại B và C của (X).

 \(\Rightarrow DC^2=DP.DX=DT.DG\) \(\Rightarrow\) Tứ giác TPXG nội tiếp.

 \(\Rightarrow\widehat{DPT}=\widehat{XGT}=\widehat{XTG}=\widehat{XPG}\)

 \(\Rightarrow90^o-\widehat{DPT}=90^o-\widehat{XPG}\)

 \(\Rightarrow\widehat{UPT}=\widehat{UPG}\) . Do \(\widehat{UPG}+\widehat{GPC}=180^o\)

 \(\Rightarrow\) \(\widehat{GPC}+\widehat{UPT}=180^o\)

  Vì D là giao điểm của 2 tiếp tuyến tại B và C của đường tròn (X) nên GD là đối trung của tam giác GBC 

 \(\Rightarrow\widehat{BGT}=\widehat{PGC}\)

  Lại có \(\widehat{GTB}=\widehat{GCP}\) \(\Rightarrow\Delta GTB\sim\Delta GCP\) \(\Rightarrow\widehat{GBT}=\widehat{GPC}\)

  Lại có \(\widehat{GBT}=\widehat{GIT}\) nên \(\widehat{GPC}=\widehat{GIT}\)

  Kết hợp với \(\widehat{GPC}+\widehat{UPT}=180^o\), ta có \(\widehat{GIT}+\widehat{UPT}=180^o\) 

 \(\Rightarrow\) Tứ giác ITPJ nội tiếp.

 Mặt khác, \(\left(BCJU\right)=-1\) và P là trung điểm BC nên \(\overline{UJ}.\overline{UP}=\overline{UB}.\overline{UC}\) (hệ thức Maclaurin)

 \(\Rightarrow P_{U/\left(ITPJ\right)}=P_{U/\left(X\right)}\)

 \(\Rightarrow\) U nằm trên trục đẳng phương của đường tròn (ITPJ) và (X), mà IT là trục đẳng phương của 2 đường tròn này nên U, I, T thẳng hàng.

 Xét cực và đối cực đối với (I). Kí hiệu \(d_Y\) là đối cực của Y đối với (I).

 Ta có \(\left(BCJU\right)=-1\) \(\Rightarrow J\in d_U\) 

 Lại có \(U\in EF\equiv d_A\Rightarrow A\in d_U\) 

 Do đó \(JA\equiv d_U\) \(\Rightarrow JA\perp UI\) hay \(JA\perp IT\) (đpcm)

a) Gọi K' là giao điểm của BI và EF, S là giao điểm của EJ và AB.

 Ta có \(\left(FSBA\right)=-1\) (hàng điều hòa quen thuộc). Mặt khác, dễ thấy K'B là trung trực của FJ nên K'B cũng là tia phân giác của \(\widehat{FK'S}\)

 Do đó, \(\widehat{AK'B}=90^o\). Khi đó tam giác AK'B vuông tại K' có trung tuyến K'M nên \(K'M=MB=\dfrac{1}{2}AB\)

 Từ đó suy ra tam giác MK'B cân tại M \(\Rightarrow\widehat{MK'B}=\widehat{MBK'}=\widehat{K'BC}\)

 Do đó MK'//BC. Chú ý rằng MN là đường trung bình của tam giác ABC \(\Rightarrow\) MN//BC. Vậy \(K'\in MN\) hay K' chính là giao điểm của MN và JE. Điều này có nghĩa là \(K'\equiv K\)

 Như vậy, \(K,B,I\) thẳng hàng và \(\widehat{AKB}=90^o\) hay \(AK\perp BI\)

 Lại có \(FJ\perp BI\) nên AK//FJ hay AK//HJ.

 Tương tự, ta cũng có AH//KJ nên tứ giác AKJH là hình bình hành.

 \(\Rightarrow\) HK, AJ cắt nhau tại trung điểm mỗi đoạn, hay JA đi qua trung điểm của HK.

 

ĐK: \(x\ge2,y\ge-2009,z\ge2010\)

Ta có: \(\sqrt{x-2}=\sqrt{1.\left(x-2\right)}\le\dfrac{1+x-2}{2}=\dfrac{x-1}{2}\)

\(\sqrt{y+2009}=\sqrt{1.\left(y+2009\right)}\le\dfrac{1+y+2009}{2}=\dfrac{y+2010}{2}\)

\(\sqrt{z-2010}=\sqrt{1.\left(z-2010\right)}\le\dfrac{1+z-2010}{2}=\dfrac{z-2009}{2}\)

Cộng theo vế 3 BĐT vừa tìm được, ta có:

\(VT=\sqrt{x-2}+\sqrt{y+2009}+\sqrt{z-2010}\)

\(\le\dfrac{x-1}{2}+\dfrac{y+2010}{2}+\dfrac{z-2009}{2}\)

\(=\dfrac{x-1+y+2010+z-2009}{2}\)

\(=\dfrac{1}{2}\left(x+y+z\right)\)

\(=VP\)

Do đó, dấu "=" phải xảy ra 

\(\Leftrightarrow x-2=y+2009=z-2010=1\)

\(\Leftrightarrow\left(x,y,z\right)=\left(3,-2008,2011\right)\)

Vậy pt đã cho có nghiệm duy nhất là \(\left(3,-2008,2011\right)\)

a) Tam giác ADH vuông tại D có trung tuyến DM 

\(\Rightarrow DM=\dfrac{1}{2}AH\)

Tương tự, ta có \(EM=\dfrac{1}{2}AH\).

Từ đó suy ra \(DM=EM\left(=\dfrac{1}{2}AH\right)\) (đpcm)

b) Tam giác BCD vuông tại D có trung tuyến DN 

\(\Rightarrow DN=\dfrac{1}{2}BC\)

Tương tự, ta có \(EN=\dfrac{1}{2}BC\)

\(\Rightarrow DN=EN\left(=\dfrac{1}{2}BC\right)\)

\(\Rightarrow\Delta NDE\) cân tại N (đpcm)

c) Vì \(DM=EM\left(cmt\right)\) nên M thuộc trung trực của DE.

\(DN=EN\left(cmt\right)\) nên N cũng thuộc trung trực của DE.

\(\Rightarrow\) MN là trung trực của đoạn DE

\(\Rightarrow MN\perp DE\) (đpcm)

 Gọi T là giao điểm của EF và BC. Gọi J là trung điểm DT. Khi đó vì \(\widehat{TKD}=90^o\) nên \(K\in\left(J,JD\right)\). Đặt \(JB=b,JC=c,JD=JT=d\)

 Dễ thấy \(AE=AF,BF=BD,CD=CE\) nên \(\dfrac{FA}{FB}.\dfrac{DB}{DC}.\dfrac{EC}{EA}=1\)

 Hơn nữa, áp dụng định lý Menelaus cho tam giác ABC với cát tuyến EFT, ta có: \(\dfrac{FA}{FB}.\dfrac{TB}{TC}.\dfrac{EC}{EA}=1\) 

 Từ đó suy ra \(\dfrac{DB}{DC}=\dfrac{TB}{TC}\)

 \(\Leftrightarrow\dfrac{JD-JB}{JC-JD}=\dfrac{JB+JT}{JC+JT}\)

 \(\Leftrightarrow\dfrac{d-b}{c-d}=\dfrac{b+d}{c+d}\)

 \(\Leftrightarrow\left(d-b\right)\left(c+d\right)=\left(c-d\right)\left(b+d\right)\)

 \(\Leftrightarrow cd+d^2-bc-bd=bc+cd-bd-d^2\)

 \(\Leftrightarrow2d^2=2bc\)

 \(\Leftrightarrow JD^2=JB.JC=JK^2\) \(\left(vìJD=JK\right)\)

 \(\Leftrightarrow\dfrac{JK}{JC}=\dfrac{JB}{JK}\)

 Xét tam giác JBK và JKC, có: 

 \(\dfrac{JK}{JC}=\dfrac{JB}{JK}\) và \(\widehat{J}\) chung nên 

\(\Delta JBK\sim\Delta JKC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{KB}{KC}=\dfrac{JB}{JK}=\dfrac{JB}{JD}=\dfrac{b}{d}\)

Lại có \(d^2=bc\) 

\(\Leftrightarrow d^2-bd=bc-bd\)

\(\Leftrightarrow d\left(d-b\right)=b\left(c-d\right)\)

\(\Leftrightarrow\dfrac{b}{d}=\dfrac{d-b}{c-d}\)

 Như vậy \(\dfrac{KB}{KC}=\dfrac{b}{d}=\dfrac{d-b}{c-d}=\dfrac{JD-JB}{JC-JD}=\dfrac{DB}{DC}\)

 Do đó theo tính chất đường phân giác trong tam giác, KD là phân giác \(\widehat{BKC}\) (đpcm)

 Dạng tổng quát của pt này là \(x^2-dy^2=-1\)     (1) với \(d\) là số nguyên dương không chính phương. 

 Khi đó xét pt liên kết với (1) là \(x^2-dy^2=1\)    (2). Gọi \(\left(a,b\right)\) là nghiệm nguyên dương nhỏ nhất của (2). 

 Xét hệ pt \(\left\{{}\begin{matrix}a=x^2+dy^2\\b=2xy\end{matrix}\right.\)  (3). Nếu hệ (3) có nghiệm nguyên dương thì (1) cũng có nghiệm nguyên dương. Gọi \(\left(u,v\right)\) là nghiệm nguyên dương duy nhất của (3) thì xét dãy số nguyên dương \(\left\{x_n\right\},\left\{y_n\right\}\) xác định bởi: 

 \(\left\{{}\begin{matrix}x_0=a,x_1=u^3+3duv^2,x_{n+2}=2ax_{n+1}-x_n\\y_0=b,y_1=dv^3+3u^2v,y_{n+2}=2ay_{n+1}-y_n\end{matrix}\right.\) với \(n\inℕ\)

Khi đó \(\left(x_n,y_n\right)\) là tất cả các nghiệm nguyên dương của pt đã cho.

Đây là phương trình Pell loại 2 nhé bạn.

\(x^2-5y^2=-1\)    (1)

Xét phương trình liên kết với pt đã cho là \(x^2-5y^2=1\)     (2)

Ta thấy \(\left(9,4\right)\) là nghiệm nguyên dương nhỏ nhất của pt (2)

Xét hệ phương trình: \(\left\{{}\begin{matrix}9=x^2+5y^2\\4=2xy\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+5y^2=9\\xy=2\end{matrix}\right.\)   (3). Hệ (3) có nghiệm nguyên dương duy nhất là \(\left(2,1\right)\)

Xét các dãy số nguyên dương \(\left\{x_n\right\},\left\{y_n\right\}\) xác định bởi:

\(\left\{{}\begin{matrix}x_0=2,x_1=38,x_{n+2}=18x_{n+1}-x_n\\y_0=1,y_1=17,y_{n+2}=18y_{n+1}-y_n\end{matrix}\right.\) với \(n\inℕ\)

Khi đó mọi cặp số \(\left(x_n,y_n\right)\) đều là nghiệm của pt đã cho.

VD: Chọn \(n=0\) thì \(\left(x_n,y_n\right)=\left(x_0;y_0\right)=\left(2,1\right)\). Thử lại: \(2^2-5.1^2=-1\) (thỏa mãn) 

 Chọn \(n=1\) thì \(\left(x_n;y_n\right)=\left(x_1;y_1\right)=\left(38;17\right)\). Thử lại:

\(38^2-5.17^2=-1\) (thỏa mãn)

 

Ta có \(A=n^2\left(n^4-n^2+2n+2\right)\)

\(A=n^2\left(n^4+n^3-n^3-n^2+2n+2\right)\)

\(A=n^2\left(n^3\left(n+1\right)-n^2\left(n+1\right)+2\left(n+1\right)\right)\)

\(A=n^2\left(n+1\right)\left(n^3-n^2+2\right)\)

\(A=n^2\left(n+1\right)\left(n^3+n^2-2n^2+2\right)\)

\(A=n^2\left(n+1\right)\left(n^2\left(n+1\right)-2\left(n^2-1\right)\right)\)

\(A=n^2\left(n+1\right)\left(n^2\left(n+1\right)-2\left(n-1\right)\left(n+1\right)\right)\)

\(A=n^2\left(n+1\right)^2\left(n^2-2n+2\right)\)

Do đó, để A là số chính phương thì \(n^2-2n+2\) phải là số chính phương.

\(\Leftrightarrow n^2-2n+2=k^2\left(k\inℕ,k\ge1\right)\)

\(\Leftrightarrow k^2-n^2+2n-1=1\)

\(\Leftrightarrow k^2-\left(n-1\right)^2=1\)

\(\Leftrightarrow\left(k+n-1\right)\left(k-n+1\right)=1\)

\(\Leftrightarrow k+n-1=k-n+1=1\)

\(\Leftrightarrow k=n=1\)

Thử lại: Với \(n=1\), ta thấy \(A=1^2-1^4+2.1^3+2.1^2=4\) là SCP.

Vậy \(n=1\) là số tự nhiên duy nhất thỏa mãn đề bài.

\(A=sin^210+sin^220+sin^245+sin^270+sin^280\)

\(A=sin^210+sin^220+sin^245+cos^220+cos^210\)

\(A=\left(sin^210+cos^210\right)+\left(sin^220+cos^220\right)+sin^245\)

\(A=1+1+\left(\dfrac{\sqrt{2}}{2}\right)^2\)

\(A=\dfrac{5}{2}\)

Sửa lại đề bài là cm \(\dfrac{1}{DI^2}+\dfrac{1}{DK^2}=\dfrac{1}{a^2}\) nhé.

Qua D kẻ đường thẳng vuông góc với DE cắt BC tại F.

Khi đó \(\widehat{DAI}=\widehat{CDF}\) (vì cùng phụ với \(\widehat{IDC}\))

Tứ giác ABCD là hình vuông nên \(DA=DC\)

Xét tam giác ADI và CDF, ta có:

\(\widehat{DAI}=\widehat{DCF}=90^o;DA=DC;\widehat{ADI}=\widehat{CDF}\)

\(\Rightarrow\Delta ADI=\Delta CDF\left(g.c.g\right)\)

\(\Rightarrow DI=DF\)

Tam giác DKF vuông tại D có đường cao DC \(\left(C\in KF\right)\) nên:

\(\dfrac{1}{DF^2}+\dfrac{1}{DK^2}=\dfrac{1}{DC^2}\) (hệ thức lượng trong tam giác vuông)

\(\Rightarrow\dfrac{1}{DI^2}+\dfrac{1}{DK^2}=\dfrac{1}{a^2}\) (do \(DI=DF,DC=a\))

Ta có đpcm.