

456
Giới thiệu về bản thân



































`A`
`a, N = 15,32 + 27,4 - 4,25` $\times$ `2`
` N = 15,32 + 27,4 - 8,5`$\text{Kết quả của 4,25 * 2}$
` N = 42,72 - 8,5 `$\text {Kết quả của phép tính 15,32 + 27,4}$
`N = 34,22` $\text {(kết quả cuối cùng}$
`b, M = (227,45 - 142,65) : 3,2 - 25`
`M = 81,8 : 3,2 - 25`$\text{Kết quả của 227,45 - 142,65 , thực hiện nó trước vì nó là phép tính trong ngoặc}$
`M = 25,5625 - 25`$\text{Kết quả của phép tính 81,8 : 3,2}$
`M = 0,5625`$\text{Kết quả cuối cùng}$
\(\dfrac{x+1}{2}=\dfrac{y+3}{4}=\dfrac{z+5}{6};2x+3y+4z=9\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\dfrac{2x+2}{4}=\dfrac{3y+9}{12}=\dfrac{4z+20}{24}\)
\(\Rightarrow\dfrac{\left(2x+3y+4z\right)+\left(2+9+20\right)}{4+12+24}=\dfrac{9+31}{40}=1\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x+1}{2}=1\\\dfrac{y+3}{4}=1\\\dfrac{z+5}{6}=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x+1=2\\y+3=4\\z+5=6\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\\z=1\end{matrix}\right.\)
Vậy \(x=1;y=1;z=1\)
`a, x - 75 = -26`
`x = -26 + 75`
`x = 49`
Vậy/So...
\(b,\left(8-x\right).\left(x+15\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}8-x=0\\x+15=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8-0\\x=0-15\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=8\\x=-15\end{matrix}\right.\)
Vậy \(x\in\left\{8;-15\right\}\)
\(A=3+3^2+3^3+...+3^{2024}\)
\(3A=3^2+3^3+3^4+...+3^{2025}\)
\(3A-A=\left(3^2+3^3+3^4+...+3^{2025}\right)-\left(3+3^2+3^3+...+3^{2024}\right)\)
\(2A=3^{2025}-3\)
\(A=\dfrac{3^{2025}-3}{2}\)
\(_{\left(\dfrac{13}{14}+\dfrac{1}{16}\right)-\left(\dfrac{13}{14}-\dfrac{15}{16}\right)}\)
\(=\dfrac{13}{14}+\dfrac{1}{16}-\dfrac{13}{14}+\dfrac{15}{16}\)
\(=\left(\dfrac{13}{14}-\dfrac{13}{14}\right)+\left(\dfrac{1}{16}+\dfrac{15}{16}\right)\)
\(=0+1=1\)
\(2\left(x-5\right)+3\left(x-9\right)=x-49\)
\(\Rightarrow2x-10+3x-27=x-49\)
\(\Rightarrow2x+3x-x=-49+27+10\)
\(\Rightarrow4x=-12\)
\(\Rightarrow x=-12:4\)
\(\Rightarrow x=-3\)
Vậy...
\(\left[461+\left(-78\right)+40\right]+\left(-461\right)\)
\(=\left[461-78+40\right]-461\)
\(=461-78+40-461\)
\(=\left(461-461\right)-\left(78-40\right)\)
\(=0-38=-38\)
`d, 125 . (-36) + (-36) . (-52) + 36 . (-27) + (-400)`
`= 125 . (-36) + (-36) . (-52) + (-36) . 27 + (-400)`
`= [125 + (-52) + 27] . (-36) + (-400)`
`= 100 . (-36) + (-400)`
`= (-3600) + (-400) = (-4000)`
\(1+5+5^2+...+5^{2024}\)
a,
Đặt \("1+5+5^2+...+5^{2024}"\) là `S`
Ta có :
\(S=1+5+5^2+...+5^{2024}\)
\(5S=5+5^2+5^3+...+5^{2025}\)
\(5S-S=\left(5+5^2+5^3+...+5^{2024}\right)-\left(1+5+5^2+...+5^{2024}\right)\)
\(4S=5^{2024}-1\)
\(S=\dfrac{5^{2024}-1}{4}\)
`b,`
\(4\times\dfrac{5^{2024}-1}{4}+1=5^n\)
\(\Rightarrow5^{2024}-1+1=5^n\)
\(\Rightarrow5^{2024}=5^n\)
\(\Rightarrow n=2024\)
\(2\left(x-5\right)-3\left(x+7\right)=14\)
\(\Rightarrow2x-10-3x+21=14\)
\(\Rightarrow2x-3x=14+21+10\)
\(\Rightarrow-x=45\)
\(\Rightarrow x=-45\)
Vậy...