Nguyễn Quốc Huy

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của Nguyễn Quốc Huy
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

loading...

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó △���=△��� (c.c.c)

⇒���^=���^ (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

loading...

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

loading...

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó △���=△��� (c.c.c)

⇒���^=���^ (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

loading...

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó △���=△��� (c.c.c)

⇒���^=���^ (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

loading...

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó △���=△��� (c.c.c)

⇒���^=���^ (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

loading...

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

loading...

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó △���=△��� (c.c.c)

⇒���^=���^ (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

loading...

a) △��� cân tại  nên ���^=���^.

Vì �� và �� là đường phân giác của �^,�^ nên �1^=�2^=���^2�1^=�2^=���^2.

Do đó �1^=�2^=�1^=�2^.

Suy ra △��� cân tại .

b) Vì  là giao điểm các đường phân giác �� và �� trong △��� nên  là giao điểm ba đường phân giác trong △���.

Do đó,  cách đều ba cạnh ��,�� và ��.

c) Ta có △��� cân tại �,�� là đường phân giác của góc  nên �� đồng thời là trung tuyến và đường cao của △���.

Vậy đường thẳng �� đi qua trung điểm của đoạn thẳng �� và vuông góc với nó.

d) Ta có △���=△��� (g.c.g)

⇒��=�� (hai cạnh tương ứng).

e) Ta có ��=��−����=��−�� (1);

△���=△���⇒��=�� (2).

Lại có ��=�� (tam giác ��� cân tại ) (3).

Từ (1), (2) và (3) suy ra ��=��.

Vậy tam giác ��� cân tại .

loading...

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó △���=△��� (c.c.c)

⇒���^=���^ (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

a) Xét △��� và △��� có

�^=�^=90∘ (giả thiết);

�� cạnh chung;

���^=���^ (�� là tia phân giác).

Vậy △���=△��� (cạnh huyền - góc nhọn).

b) △���=△��� (chứng minh trên)

⇒��=�� (hai cạnh tương ứng).

Gọi  là giao điểm của �� và ��.

Xét △��� và △���, có

��=�� (chứng minh trên);

���^=���^ (�� là tia phân giác);

OH chung.

Do đó △���=△��� (c.g.c)

⇒���^=���^ (hai góc tương ứng)

Mà ���^+���^=180∘ nên ���^=���^=90∘.

Vậy ��⊥��.